Boundary layers, Free boundaries and polymeric flows
边界层、自由边界和聚合物流动
基本信息
- 批准号:1211806
- 负责人:
- 金额:$ 85.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
MasmoudiDMS-1211806 This project is concerned with the study of problems coming from fluid mechanics, gas dynamics, and plasma physics. The principal investigator with his collaborators P. Germain and J. Shatah develops the method of space-time resonances, which combines the standard notion of resonances with the study of the spatial localization of solutions. One application of the method is the global existence and scattering for water waves and for capillary waves. He studies asymptotic problems in fluid mechanics, especially those giving rise to boundary layers: zero viscosity limit and compressible-incompressible limit in the presence of a free boundary, and the hydrodynamic limit of the Boltzmann equation in a bounded domain. Understanding the properties of the boundary layer is important in many applications. He investigates the homogenization of elliptic operators in the presence of oscillating boundary data. He also studies global existence of weak solutions for some non-Newtonian fluids (viscoelastic) and especially polymeric liquids. These systems require a coupling between a fluid equation and the Fokker-Planck equation for the polymers. The investigator studies the behavior of complicated systems with different boundary conditions and in different limiting cases. These studies provide an improved understanding of the real physical phenomena taking place and of the domain of validity of each simplifying model. This is important for engineers and physicists who look for the simplest model that captures the phenomena, to implement numerically or to apply in real life. For instance, water waves problems are important to understand tsunamis and rogue waves. Moreover, the study of viscoelastic fluids and especially polymeric liquids (egg white, blood, or dough for example) is important in many industrial applications such as food processing and is of great interest in many branches of applied physics, chemistry, and biology. This project includes the training of graduate students in mathematics and physics.
MASMUDI DMS-1211806这个项目涉及对流体力学、气体动力学和等离子体物理问题的研究。首席研究人员与他的合作者P.Germain和J.Shatah开发了时空共振的方法,该方法将共振的标准概念与解的空间局部化研究相结合。该方法的一个应用是水波和毛细管波的整体存在和散射。他研究流体力学中的渐近问题,特别是那些引起边界层的问题:有自由边界时的零粘性极限和可压缩-不可压缩极限,以及有界域中Boltzmann方程的流体动力学极限。了解边界层的性质在许多应用中都很重要。他研究了存在振荡边界数据时椭圆算子的齐次化问题。他还研究了一些非牛顿流体(粘弹性),特别是聚合物液体弱解的整体存在性。这些体系需要聚合物的流体方程和福克-普朗克方程之间的耦合。研究人员研究了具有不同边界条件的复杂系统在不同极限情况下的行为。这些研究提供了对发生的真实物理现象和每个简化模型的有效性领域的更好的理解。这对于寻找捕捉现象的最简单模型的工程师和物理学家来说很重要,无论是在数值上实现还是在现实生活中应用。例如,水波问题对于理解海啸和无赖海浪很重要。此外,粘弹性流体特别是聚合物液体(例如蛋清、血液或面团)的研究在食品加工等许多工业应用中都很重要,并且在应用物理、化学和生物学的许多分支中都引起了极大的兴趣。该项目包括对研究生进行数学和物理方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nader Masmoudi其他文献
Vorticity directions near the blow-up time for the 3D Navier-Stokes flows with infinite energy
具有无限能量的 3D 纳维-斯托克斯流在爆炸时间附近的涡度方向
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Slim Ibrahim;Nader Masmoudi;KenjiNakanishi;K. Ito;三浦 英之 - 通讯作者:
三浦 英之
Scattering theory from a geometric view point
从几何角度看散射理论
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito - 通讯作者:
K. Ito
Characterization of polynomials from potential theory and complex dynamics
势论和复杂动力学的多项式表征
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nader Masmoudi;Kenji Nakanishi;奥山裕介;K. Ito;奥山裕介 - 通讯作者:
奥山裕介
Existence, Uniqueness and Lipschitz Dependence for Patlak–Keller–Segel and Navier–Stokes in $${\mathbb{R}^2}$$ with Measure-Valued Initial Data
- DOI:
10.1007/s00205-014-0796-z - 发表时间:
2014-09-20 - 期刊:
- 影响因子:2.400
- 作者:
Jacob Bedrossian;Nader Masmoudi - 通讯作者:
Nader Masmoudi
Twoasymptotic problems for a singularnonlinear Schrodinger system
奇异非线性薛定谔系统的两个渐近问题
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.7
- 作者:
Nader Masmoudi;Kenji Nakanishi - 通讯作者:
Kenji Nakanishi
Nader Masmoudi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nader Masmoudi', 18)}}的其他基金
Hydrodynamic Stability, Boundary layers, Free boundaries, and Polymeric Flows
流体动力学稳定性、边界层、自由边界和聚合物流动
- 批准号:
1716466 - 财政年份:2017
- 资助金额:
$ 85.52万 - 项目类别:
Continuing Grant
Dynamics of Gaseous Stars and Hydrodynamic Limits for Boltzmann Equations
气态恒星的动力学和玻尔兹曼方程的流体动力学极限
- 批准号:
0908007 - 财政年份:2009
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
Asymptotic problems and Well-posedness results in Fluid Mechanics and Plasma Physics
流体力学和等离子体物理学中的渐近问题和适定性结果
- 批准号:
0703145 - 财政年份:2007
- 资助金额:
$ 85.52万 - 项目类别:
Continuing Grant
Asymptotic Problems in Fluid Mechanics, Gas Dynamics and Quantum Mechanics
流体力学、气体动力学和量子力学中的渐近问题
- 批准号:
0403983 - 财政年份:2004
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
Asymptotic Problems in Fluid Mechanics and Gas Dynamics
流体力学和气体动力学中的渐近问题
- 批准号:
0100946 - 财政年份:2001
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
相似海外基金
Fluorine-free catalyst layers for low temperature hydrogen fuel cells
用于低温氢燃料电池的无氟催化剂层
- 批准号:
570797-2021 - 财政年份:2022
- 资助金额:
$ 85.52万 - 项目类别:
Alliance Grants
Innovative reactive polyiodide melt method to fabricate lead-free Perovskite absorber layers and solar cells
创新的反应性聚碘熔融法制造无铅钙钛矿吸收层和太阳能电池
- 批准号:
19K05683 - 财政年份:2019
- 资助金额:
$ 85.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural Design and Development of Carbon-Free Catalyst Layers for High Current Density Operations of Polymer Electrolyte Fuel Cells
用于聚合物电解质燃料电池高电流密度运行的无碳催化剂层的结构设计和开发
- 批准号:
18K04841 - 财政年份:2018
- 资助金额:
$ 85.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hydrodynamic Stability, Boundary layers, Free boundaries, and Polymeric Flows
流体动力学稳定性、边界层、自由边界和聚合物流动
- 批准号:
1716466 - 财政年份:2017
- 资助金额:
$ 85.52万 - 项目类别:
Continuing Grant
Multi-functional membrane selective layers by interfacial free radical polymerization
通过界面自由基聚合制备多功能膜选择性层
- 批准号:
1703549 - 财政年份:2017
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
Effect of free-stream turbulence on global and local properties of turbulent boundary layers
自由流湍流对湍流边界层全局和局部特性的影响
- 批准号:
471230-2015 - 财政年份:2016
- 资助金额:
$ 85.52万 - 项目类别:
Postdoctoral Fellowships
GOALI: Effect of free-stream disturbances on turbulent boundary layers
目标:自由流扰动对湍流边界层的影响
- 批准号:
1605404 - 财政年份:2016
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
A Novel Defined Xenobiotic Free Substrate that Mimics Natural Extracellular Matrix
一种模仿天然细胞外基质的新颖定义的无异生物质底物
- 批准号:
8833107 - 财政年份:2015
- 资助金额:
$ 85.52万 - 项目类别:
Effect of free-stream turbulence on global and local properties of turbulent boundary layers
自由流湍流对湍流边界层全局和局部特性的影响
- 批准号:
471230-2015 - 财政年份:2015
- 资助金额:
$ 85.52万 - 项目类别:
Postdoctoral Fellowships
Flexible ITO-Free transparent low-cost substrate with hIgh quality barrier layerS
具有高质量阻挡层的柔性无 ITO 透明低成本基板
- 批准号:
620073 - 财政年份:2013
- 资助金额:
$ 85.52万 - 项目类别:
EU-Funded