Traveling Fronts with Unstable Continuous Spectrum: Geometric Structure and Nonlinear Stability Properties
具有不稳定连续谱的行进前沿:几何结构和非线性稳定性特性
基本信息
- 批准号:0908009
- 负责人:
- 金额:$ 6.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Fronts are traveling waves that asymptotically connect two equilibrium states of a system. This research project is concerned with the analysis of the stability of fronts. The mechanism of the instability of fronts is defined by the competition between the rate of growth of perturbations and the rate of their transport. In the convective regime perturbations to the front are transported away faster than they grow and thus decay pointwise. Critical information about nonlinear stability of the front is contained in the spectrum of the linearization of the system about the wave, but in many cases the spectral information is not definitive. That happens, for example, when the continuous spectrum of the linearized operator crosses the imaginary axis. Standard bifurcation theory techniques then typically fail. Reducing the domain for the system to some weighted spaces often works on the linear level, but there are serious issues related to the proof of nonlinear stability in the weighted spaces. One of the goals of this project is to develop general criteria for the convective nature of instability for classes of applied problems. An instability caused by the continuous spectrum can also manifest itself in the appearance of new local or global structures. Another goal of this project is to investigate whether the instability caused by the continuous spectrum may be the key point in the explanation of phenomena that are characterized by a sudden transition from one coherent structure to another.Fronts arise in a variety of applied problems from different fields: optical communication, combustion theory, biomathematics (calcium waves in tissue, nerve conduction, population dynamics), chemistry, ecology, to name a few, therefore their stability is of a great interest. For many models the stability of a front in a full nonlinear equation cannot be simply inferred from the properties of its linear approximation. This project is focused on finding criteria for the convective (or transient) nature of the instability in such cases and investigating the mechanism of the transition between drastically different regimes within the same system, such as a sudden transition from a slow process to a much faster one. Capturing this phenomenon analytically will assist in predicting when the transition happens and exploring ways to control it. Progress in this direction will be of importance for applications in combustion theory, ecology, and biomathematics. The techniques of the analysis will be based on the relation between the geometric structure of the wave and its stability.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。锋面是行波,渐近地连接一个系统的两个平衡状态。这个研究项目是关于锋面稳定性的分析。锋面不稳定的机制是由扰动的增长速度和它们的传输速度之间的竞争来确定的。在对流状态下,锋面的扰动被传送的速度比它们增长的速度要快,因此逐点衰减。锋面非线性稳定性的关键信息包含在系统关于波的线性化的谱中,但在许多情况下,谱信息不是确定的。例如,当线性化算子的连续谱与虚轴相交时,就会发生这种情况。标准的分岔理论技术通常会失败。将系统的定域约简到一些加权空间通常在线性水平上有效,但在加权空间中存在着与非线性稳定性证明相关的严重问题。该项目的目标之一是为各类应用问题的不稳定性的对流性质制定一般准则。由连续光谱引起的不稳定性也可以表现为新的局部或全局结构的出现。该项目的另一个目标是研究由连续光谱引起的不稳定性是否可能是解释从一个相干结构突然转变为另一个相干结构的现象的关键点。前沿出现在不同领域的各种应用问题中:光通信,燃烧理论,生物数学(组织中的钙波,神经传导,种群动力学),化学,生态学,仅举几例,因此它们的稳定性是一个很大的兴趣。对于许多模型来说,不能简单地从锋面的线性近似性质推断出锋面在完全非线性方程中的稳定性。该项目的重点是寻找这种情况下不稳定性的对流(或瞬态)性质的标准,并研究同一系统中截然不同的制度之间的转变机制,例如从缓慢过程突然转变为更快的过程。分析地捕捉这一现象将有助于预测何时发生过渡并探索控制它的方法。这一方向的进展对燃烧理论、生态学和生物数学的应用具有重要意义。分析技术将基于波浪的几何结构与其稳定性之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Ghazaryan其他文献
61 - Multiple Sclerosis Fatigue Relief by Bilateral Somatosensory Cortex Neuromodulation
- DOI:
10.1016/j.brs.2016.11.079 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Carlo Cottone;Andrea Cancelli;Giancarlo Zito;Patrizio Pasqualetti;Anna Ghazaryan;Paolo Maria Rossini;Maria Maddalena Filippi;Franca Tecchio - 通讯作者:
Franca Tecchio
Correction to: Virtual visits for chronic neurologic disorders during COVID-19 pandemic
- DOI:
10.1007/s10072-021-05229-8 - 发表时间:
2021-04-07 - 期刊:
- 影响因子:2.400
- 作者:
Irene Rosellini;Marika Vianello;Anna Ghazaryan;Silvia Vittoria Guidoni;Anna Palmieri;Federico Giopato;Roberta Vitaliani;Matteo Fuccaro;Alberto Terrin;Maria Teresa Rigoni;Francesco Pietrobon;Domenico Marco Bonifati - 通讯作者:
Domenico Marco Bonifati
Stability of fronts in the diffusive Rosenzweig-MacArthur model
扩散 Rosenzweig-MacArthur 模型中前沿的稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna Ghazaryan;St'ephane Lafortune;Yuri Latushkin;Vahagn Manukian - 通讯作者:
Vahagn Manukian
Multiple sclerosis: pharmacogenomics and personalised drug treatment
多发性硬化症:药物基因组学和个性化药物治疗
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.3
- 作者:
Viviana Annibali;G. Ristori;S. Cannoni;S. Romano;A. Visconti;Anna Ghazaryan;L. F. Talamanca;Marco Salvetti;R. Mechelli - 通讯作者:
R. Mechelli
Flame propagation in a porous medium
- DOI:
10.1016/j.physd.2020.132653 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Anna Ghazaryan;Stéphane Lafortune;Choral Linhart - 通讯作者:
Choral Linhart
Anna Ghazaryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Ghazaryan', 18)}}的其他基金
Fall 2019 Mathematics Conference: Differential Equations and Dynamical Systems and Applications
2019 年秋季数学会议:微分方程和动力系统及应用
- 批准号:
1919555 - 财政年份:2019
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
Fall 2016 Mathematics Conference: Differential Equations and Dynamical Systems
2016 年秋季数学会议:微分方程和动力系统
- 批准号:
1630812 - 财政年份:2016
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
On three different manifestations of instability of fronts in parabolic and partially parabolic systems
抛物线和部分抛物线系统中锋面不稳定性的三种不同表现
- 批准号:
1311313 - 财政年份:2013
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
相似海外基金
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 6.31万 - 项目类别:
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331373 - 财政年份:2023
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331372 - 财政年份:2023
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant
Control of dual displacement fronts by non-Newtonian reactive flow for improved sweep efficiency
通过非牛顿反应流控制双位移前沿以提高波及效率
- 批准号:
22KF0132 - 财政年份:2023
- 资助金额:
$ 6.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
How is the topography of major orogenic fronts sustained and where is plate convergence accommodated on intermediate timescales: the collisional Himalayan orogen?
主要造山锋面的地形是如何维持的,以及板块汇聚在中间时间尺度上的位置:碰撞的喜马拉雅造山带?
- 批准号:
511446535 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Heisenberg Grants
Offshore wind farm effects on ocean fronts and seabirds
海上风电场对海滨和海鸟的影响
- 批准号:
2755127 - 财政年份:2022
- 资助金额:
$ 6.31万 - 项目类别:
Studentship
Mathematical analysis of vorticity fronts
涡度锋面的数学分析
- 批准号:
2594616 - 财政年份:2021
- 资助金额:
$ 6.31万 - 项目类别:
Studentship
Quantifying vertical and lateral ocean transport due to fronts and eddies
量化锋面和涡流引起的垂直和横向海洋运输
- 批准号:
DP210102745 - 财政年份:2021
- 资助金额:
$ 6.31万 - 项目类别:
Discovery Projects
Structures of Extratropical Cyclones Accompanied by Sprit Fronts and The Formation Mechanism of Their Associated Torrential Rainfall
锋面伴随的温带气旋的结构及其相关暴雨的形成机制
- 批准号:
20K14553 - 财政年份:2020
- 资助金额:
$ 6.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: The Role of Coastal Fronts in Mixing and Ventilating Coastal Waters
合作研究:海岸锋在混合和通风沿海水域中的作用
- 批准号:
2022738 - 财政年份:2020
- 资助金额:
$ 6.31万 - 项目类别:
Standard Grant