On three different manifestations of instability of fronts in parabolic and partially parabolic systems

抛物线和部分抛物线系统中锋面不稳定性的三种不同表现

基本信息

  • 批准号:
    1311313
  • 负责人:
  • 金额:
    $ 10.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Traveling waves are solutions of partial differential equations that preserve their shape while moving in a preferred direction. Traveling waves are basic coherent structures in partial differential equations and they often serve as building blocks for complex patterns. This project is about traveling waves in parabolic and partly parabolic systems (in partly parabolic systems some quantities diffuse and others do not). More precisely, this project is focused on the investigation of three phenomenologically different manifestations of instability of traveling waves: (1) If a system supports waves that move with different speeds, what kind of instability can cause a transition from one wave to another? In such systems of coupled equations, will the preferred wave speed be defined by linear or nonlinear dynamics? (2) How to analytically prove or predict that instability is convective? For a convectively unstable wave small perturbations are moving away from the interface of the wave faster than they grow. (3) An instability sometimes manifests itself in the appearance of new structures. These can be patterns in a neighborhood of an asymptotic rest state of the wave, or new global structures such as modulated waves which are composite waves that consist of a wave and periodic patterns. Modulated waves are known to exist in parabolic systems. A component of this project is devoted to the study of modulated waves in partly parabolic systems. Traveling waves are abundant in nature and human activities. They arise in applied problems from different fields: optical communication, combustion theory, biomathematics, chemistry, population dynamics, to name a few. Information about whether traveling waves exist, how many of them are there in the system, and their resilience under perturbations assists in understanding of complex phenomena. Proposed work will help to identify situations when multiple waves exist and when the transition between them can be anticipated and controlled. Traveling waves that are observed in real life are usually stable (resilient under small perturbations). Stable waves withstand inhomogeneity of the medium that carries them and perturbations that may be caused by a variety of factors. Scientists and engineers who study traveling waves are interested to know in what parameter regimes waves are stable, but it is equally important to know what to expect from an unstable wave. The proposed work will allow detailed and rigorous conclusions to be drawn about how different perturbations to a wave behave and what the outcome of an instability is.
行波是偏微分方程的解,在沿优选方向移动时保持其形状。行波是偏微分方程中的基本相干结构,并且它们经常充当复杂图案的构建块。这个项目是关于抛物和部分抛物系统中的行波(在部分抛物系统中,一些量扩散,另一些不扩散)。更准确地说,本项目的重点是研究行波不稳定性的三种现象学上不同的表现:(1)如果一个系统支持以不同速度移动的波,什么样的不稳定性会导致从一个波到另一个波的转变?在这样的耦合方程组中,优选的波速是由线性动力学还是非线性动力学定义的?(2)如何用分析方法证明或预测不稳定是对流性的?对于对流不稳定波,小扰动离开波界面的速度比它们的增长速度快。(3)不稳定性有时表现为新结构的出现。这些可以是波的渐近静止状态附近的模式,或者是新的全局结构,例如调制波,调制波是由波和周期性模式组成的复合波。已知调制波存在于抛物系统中。该项目的一个组成部分是致力于部分抛物系统中调制波的研究。行波在自然界和人类活动中大量存在。它们出现在不同领域的应用问题中:光通信,燃烧理论,生物数学,化学,种群动力学,仅举几例。关于行波是否存在、系统中有多少行波以及它们在扰动下的弹性的信息有助于理解复杂现象。拟议的工作将有助于确定存在多个波的情况,以及可以预测和控制它们之间的过渡的情况。在真实的生活中观察到的行波通常是稳定的(在小扰动下有弹性)。稳定的波可以承受携带它们的介质的不均匀性和可能由各种因素引起的扰动。研究行波的科学家和工程师有兴趣知道波在什么参数范围内是稳定的,但同样重要的是要知道不稳定波的预期。拟议的工作将允许详细和严格的结论,得出不同的扰动波的行为和不稳定的结果是什么。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Ghazaryan其他文献

61 - Multiple Sclerosis Fatigue Relief by Bilateral Somatosensory Cortex Neuromodulation
  • DOI:
    10.1016/j.brs.2016.11.079
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carlo Cottone;Andrea Cancelli;Giancarlo Zito;Patrizio Pasqualetti;Anna Ghazaryan;Paolo Maria Rossini;Maria Maddalena Filippi;Franca Tecchio
  • 通讯作者:
    Franca Tecchio
Correction to: Virtual visits for chronic neurologic disorders during COVID-19 pandemic
  • DOI:
    10.1007/s10072-021-05229-8
  • 发表时间:
    2021-04-07
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Irene Rosellini;Marika Vianello;Anna Ghazaryan;Silvia Vittoria Guidoni;Anna Palmieri;Federico Giopato;Roberta Vitaliani;Matteo Fuccaro;Alberto Terrin;Maria Teresa Rigoni;Francesco Pietrobon;Domenico Marco Bonifati
  • 通讯作者:
    Domenico Marco Bonifati
Stability of fronts in the diffusive Rosenzweig-MacArthur model
扩散 Rosenzweig-MacArthur 模型中前沿的稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Ghazaryan;St'ephane Lafortune;Yuri Latushkin;Vahagn Manukian
  • 通讯作者:
    Vahagn Manukian
Multiple sclerosis: pharmacogenomics and personalised drug treatment
多发性硬化症:药物基因组学和个性化药物治疗
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Viviana Annibali;G. Ristori;S. Cannoni;S. Romano;A. Visconti;Anna Ghazaryan;L. F. Talamanca;Marco Salvetti;R. Mechelli
  • 通讯作者:
    R. Mechelli
Flame propagation in a porous medium
  • DOI:
    10.1016/j.physd.2020.132653
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anna Ghazaryan;Stéphane Lafortune;Choral Linhart
  • 通讯作者:
    Choral Linhart

Anna Ghazaryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Ghazaryan', 18)}}的其他基金

Fall 2019 Mathematics Conference: Differential Equations and Dynamical Systems and Applications
2019 年秋季数学会议:微分方程和动力系统及应用
  • 批准号:
    1919555
  • 财政年份:
    2019
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Fall 2016 Mathematics Conference: Differential Equations and Dynamical Systems
2016 年秋季数学会议:微分方程和动力系统
  • 批准号:
    1630812
  • 财政年份:
    2016
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Traveling Fronts with Unstable Continuous Spectrum: Geometric Structure and Nonlinear Stability Properties
具有不稳定连续谱的行进前沿:几何结构和非线性稳定性特性
  • 批准号:
    0908009
  • 财政年份:
    2009
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant

相似海外基金

Should infant formula be available at UK food banks? Evaluating different pathways to ensuring parents in financial crisis can access infant formula.
英国食品银行应该提供婴儿配方奶粉吗?
  • 批准号:
    MR/Z503575/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
  • 批准号:
    24K17166
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CASCADE: Computational Analysis of Semantic Change Across Different Environments
CASCADE:不同环境下语义变化的计算分析
  • 批准号:
    EP/Y031075/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
The Need for Speed: Understanding the Importance of Different ELF3 Nuclear Localisation Mechanisms
对速度的需求:了解不同 ELF3 核定位机制的重要性
  • 批准号:
    BB/Z514998/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Fellowship
H5N1 influenza virulence; interference in RIG-I detection in different hosts
H5N1流感毒力;
  • 批准号:
    494285
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Operating Grants
Synthesis of multisubstituted stannoles bearing different substituents and its application to electrochromic materials
不同取代基多取代锡烷的合成及其在电致变色材料中的应用
  • 批准号:
    23K04748
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
  • 批准号:
    10549492
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
Model systems for exchange of liquid between different aerosol sources: application in disease risk during aerosol therapies
不同气溶胶源之间液体交换的模型系统:在气溶胶治疗期间疾病风险中的应用
  • 批准号:
    2885381
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Studentship
Biodiversity impacts of different net zero carbon pathways for the UK energy system. (4480)
英国能源系统不同净零碳途径的生物多样性影响。
  • 批准号:
    2760615
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了