Collaborative Proposal: The role of convection on dynamic stability of 3D incompressible Navier-Stokes equations

合作提案:对流对 3D 不可压缩纳维-斯托克斯方程动态稳定性的作用

基本信息

  • 批准号:
    0908097
  • 负责人:
  • 金额:
    $ 8.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project is to investigate the role of convection on dynamic stability of the three-dimensional incompressible Euler and Navier-Stokes equations. The main objective is to show that convection together with incompressibility plays an essential role in studying the dynamic stability of the incompressible Euler and Navier-Stokes equations. Another objective of this project is to show that there is a close connection between the global regularity of the three-dimensional Euler equations and that of the three-dimensional Navier-Stokes equations. Finally, a new regularity analysis using a Lagrangian approach for the three-dimensional Euler equations is developed to control the dynamic growth of the local curvature of vortex filaments and the maximum vorticity simultaneously. The local nonlinear stability analysis developed in this project can be potentially applied to study a large class of nonlinear dynamic problems arising from other disciplines.The understanding of the dynamic stability and the role of convection has a significant impact on many scientific applications which could affect the quality of people's life in a fundamental way. These applications include weather forecasting, environmental or global climate change, fluid dynamic applications, turbulence modeling and high performance computing. For a long time, many experts considered convection as destabilizing. This project reveals that convection actually has a surprising stabilizing effect which could affect the large time behavior of the three-dimensional incompressible flows in an essential way. An additional impact of this project is the involvement of graduate students and postdoctoral researchers. This project provides a solid training in mathematical analysis, physical modeling, and numerical simulation. The interdisciplinary training they receive in this project is very important for their future careers in mathematics and science.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目旨在研究对流对三维不可压缩欧拉方程和Navier-Stokes方程动态稳定性的作用。主要目的是表明,对流与不可压缩性起着至关重要的作用,在研究不可压缩的欧拉和Navier-Stokes方程的动态稳定性。本项目的另一个目的是证明三维Euler方程的整体正则性与三维Navier-Stokes方程的整体正则性之间有着密切的联系。最后,一个新的规则性分析,使用拉格朗日方法的三维欧拉方程的发展,以控制动态增长的局部曲率的涡丝和最大涡量的同时。本项目所发展的局部非线性稳定性分析方法可以应用于研究其他学科产生的一大类非线性动力学问题,对动力学稳定性和对流作用的理解对许多科学应用产生重大影响,这些科学应用可能从根本上影响人们的生活质量。这些应用包括天气预报、环境或全球气候变化、流体动力学应用、湍流建模和高性能计算。长期以来,许多专家认为对流是不稳定的。该项目揭示了对流实际上具有令人惊讶的稳定效果,这可能会影响三维不可压缩流的大时间行为。该项目的另一个影响是研究生和博士后研究人员的参与。该项目提供了数学分析,物理建模和数值模拟方面的扎实培训。他们在这个项目中接受的跨学科培训对他们未来的数学和科学职业非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Congming Li其他文献

Existence of the extremalfuntions for the discrete Hardy-Littlewood-Sobolev Inequality,
离散 Hardy-Littlewood-Sobolev 不等式的极值函数的存在性,
Comparison of linear system solvers applied to diffusion-type finite element equations
  • DOI:
    10.1007/bf01396343
  • 发表时间:
    1989-06-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Anne Greenbaum;Congming Li;Han Zheng Chao
  • 通讯作者:
    Han Zheng Chao
Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains
Modulating the electronic interaction of ZnFe<sub>m</sub>CrO<sub>x</sub>/SAPO-34 to boost CO<sub>2</sub> hydrogenation to light olefins
  • DOI:
    10.1016/j.mcat.2024.114588
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhifan Cao;Xiaohong Guo;Xiaoyue Wang;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Ruwei Yao;Yanchun Li;Congming Li
  • 通讯作者:
    Congming Li
Design of ZnFeAlOsub4/sub/Zn-SAPO-34 composite catalyst for selective hydrogenation of COsub2/sub to propane
用于二氧化碳选择性加氢制丙烷的 ZnFeAlO₄/Zn-SAPO-34 复合催化剂的设计
  • DOI:
    10.1016/j.apcatb.2024.124439
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Xiaoyue Wang;Xiaohong Guo;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Pengfei Wang;Ruwei Yao;Yanchun Li;Congming Li
  • 通讯作者:
    Congming Li

Congming Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Congming Li', 18)}}的其他基金

Qualitative analysis focused on some nonlinear systems
专注于一些非线性系统的定性分析
  • 批准号:
    1405175
  • 财政年份:
    2014
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Continuing Grant
Qualitative Properties of Nonlinear Differential and Integral Equations or Systems
非线性微分和积分方程或系统的定性性质
  • 批准号:
    0401174
  • 财政年份:
    2004
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Qualitative Properties of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程的定性性质
  • 批准号:
    9970530
  • 财政年份:
    1999
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Further Development and Applications of the Method of Moving Planes
数学科学:移动平面方法的进一步发展和应用
  • 批准号:
    9623390
  • 财政年份:
    1996
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the Qualitative Properties and Classification of Solutions to Nonlinear Differential Equations
数学科学:论非线性微分方程解的定性性质和分类
  • 批准号:
    9401441
  • 财政年份:
    1994
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the Existence and Qualitative Properties of Solutions of Nonlinear Partical Differential Equations
数学科学:论非线性偏微分方程解的存在性及其定性性质
  • 批准号:
    9003694
  • 财政年份:
    1990
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Proposal: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths
合作提案:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土
  • 批准号:
    2133530
  • 财政年份:
    2021
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Role of tRNA base modifications in genetic code accuracy and cellular fitness
合作提案:tRNA 碱基修饰在遗传密码准确性和细胞适应性中的作用
  • 批准号:
    1818131
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Role of tRNA base modifications in genetic code accuracy and bacterial fitness
合作提案:tRNA 碱基修饰在遗传密码准确性和细菌适应性中的作用
  • 批准号:
    1818245
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Planktonic Lower Trophic Levels in Carbon and Nitrogen Transformations in the Central Arctic, a MOSAiC Proposal
合作研究:浮游低营养级在北极中部碳和氮转化中的作用,MOSAiC 提案
  • 批准号:
    1824447
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
RUI: Collaborative Proposal: Gatekeeping Communities: The Role of Landlords in Neighborhood Change and Gentrification
RUI:协作提案:把关社区:房东在社区变革和绅士化中的作用
  • 批准号:
    1823618
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Planktonic Lower Trophic Levels in Carbon and Nitrogen Transformations in the Central Arctic, a MOSAiC Proposal
合作研究:浮游低营养级在北极中部碳和氮转化中的作用,MOSAiC 提案
  • 批准号:
    1824414
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative proposal: Evaluating phenotypic plasticity's role in adaptive evolution
合作提案:评估表型可塑性在适应性进化中的作用
  • 批准号:
    1753865
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative proposal: Evaluating phenotypic plasticity's role in adaptive evolution
合作提案:评估表型可塑性在适应性进化中的作用
  • 批准号:
    1754136
  • 财政年份:
    2018
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Taking the long view: Investigating the role of biology interest and far-sighted career goals on students' persistence in STEM career pathways
合作提案:着眼长远:研究生物学兴趣和远见职业目标对学生坚持 STEM 职业道路的作用
  • 批准号:
    1711082
  • 财政年份:
    2017
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Standard Grant
GSE/RES Collaborative proposal: How parents and their elementary school-age children solve science problems together: The role of gender and ethnicity
GSE/RES 合作提案:家长和小学适龄儿童如何共同解决科学问题:性别和种族的作用
  • 批准号:
    1231872
  • 财政年份:
    2013
  • 资助金额:
    $ 8.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了