Qualitative Properties of Nonlinear Differential and Integral Equations or Systems
非线性微分和积分方程或系统的定性性质
基本信息
- 批准号:0401174
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0401174Title: Qualitative properties of nonlinear differential andintegral equations or systemsPI: Congming Li (University of Colorado, Boulder)ABSTRACTThe PI will study qualitative properties of solutions for nonlinear integraland differential equations or systems, especially those arising from physicalsciences or from differential geometry where the physical or geometricalbackground provides very strong intuitions. Research of this type isfundamental in the understanding of many physical and geometrical problems.Many aspects of natural phenomena are related to each other by the naturallaws governing them and very often these relations are mathematicallydescribed by differential or integral equations. The study of these equationsis very important in understanding the related phenomena. It is often the casethat to solve differential equations computationally with sufficient accuracy,the most effective and economical way is to exploit the properties ofsolutions of the equations and then to develop algorithms in accordance.Besides being very useful in applied science, the study of various kinds ofstructures and properties of solutions to various types of equationsinvariably leads to new research endeavors.In particular, the PI's will continue the development of a class of verypowerful techniques, namely the Method of Moving Planes for both differentialand integral equations or systems, to the calssification and quantization ofsolutions to various fundamental systems of equations, to the study of localasymptotic symmetry of singular solutions and a priori estimates of solutions.The PI will also continue the joint work with W. Chen on the geometric problemof finding a conformal metric with a prescribed Gaussian or scalar curvature.The PI is also involved in the study of certain parabolic systems arising formother branches of sciences. The center problem the PI will study is thefundamental Hardy-Littlewood-Sobolev inequalities including the weightedversion of them. These inequalities are the most important ingredients in thestudy of Sobolev spaces and are extremely important in the study of nonlinearelliptic and parabolic partial differential equations. The first task will bethe classification of all regular critical points of the functional associatedwith these inequalities. The second is to study the singular critical points.Further developing the method of moving planes in both differential andintegral forms is essential for making progress in the above two tasks and isinteresting in its own.
DMS-0401174题目:非线性微分和积分方程或系统的定性性质PI:李聪明(科罗拉多大学,博尔德)摘要PI将研究非线性积分和微分方程或系统的解的定性性质,特别是那些来自物理科学或微分几何的物理或几何背景提供了非常强的直觉。这种类型的研究是理解许多物理和几何问题的基础。自然现象的许多方面都是由支配它们的自然规律相互联系的,而且这些关系常常用微分或积分方程来描述。这些方程的研究对于理解相关现象具有重要意义。为了在计算上达到足够的精度,最有效和最经济的方法是利用方程解的性质,然后发展相应的算法。除了在应用科学中非常有用外,对各种类型方程解的各种结构和性质的研究也在不断地导致新的研究努力。特别是,PI将继续发展一类非常强大的技术,即微分和积分方程或系统的移动平面方法,以分类和量化各种基本方程系统的解,研究奇异解的局部渐近对称性和解的先验估计,PI也将继续与W.他的主要研究方向是寻找具有高斯曲率或纯量曲率的共形度量的几何问题。PI将研究的中心问题是基本的Hardy-Littlewood-Sobolev不等式,包括它们的加权版本。这些不等式是Sobolev空间研究中最重要的组成部分,在非线性椭圆和抛物型偏微分方程的研究中也是极其重要的。第一个任务是对与这些不等式相关的泛函的所有正则临界点进行分类。二是研究奇异临界点,进一步发展微分和积分形式的动平面法是在上述两项工作中取得进展的必要条件,它本身也是很有意义的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Congming Li其他文献
Existence of the extremalfuntions for the discrete Hardy-Littlewood-Sobolev Inequality,
离散 Hardy-Littlewood-Sobolev 不等式的极值函数的存在性,
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Genggeng Huang;Congming Li;Ximing Yin - 通讯作者:
Ximing Yin
Comparison of linear system solvers applied to diffusion-type finite element equations
- DOI:
10.1007/bf01396343 - 发表时间:
1989-06-01 - 期刊:
- 影响因子:2.200
- 作者:
Anne Greenbaum;Congming Li;Han Zheng Chao - 通讯作者:
Han Zheng Chao
Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains
- DOI:
10.1080/03605309108820766 - 发表时间:
1991 - 期刊:
- 影响因子:1.9
- 作者:
Congming Li - 通讯作者:
Congming Li
Modulating the electronic interaction of ZnFe<sub>m</sub>CrO<sub>x</sub>/SAPO-34 to boost CO<sub>2</sub> hydrogenation to light olefins
- DOI:
10.1016/j.mcat.2024.114588 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Zhifan Cao;Xiaohong Guo;Xiaoyue Wang;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Ruwei Yao;Yanchun Li;Congming Li - 通讯作者:
Congming Li
Design of ZnFeAlOsub4/sub/Zn-SAPO-34 composite catalyst for selective hydrogenation of COsub2/sub to propane
用于二氧化碳选择性加氢制丙烷的 ZnFeAlO₄/Zn-SAPO-34 复合催化剂的设计
- DOI:
10.1016/j.apcatb.2024.124439 - 发表时间:
2024-12-05 - 期刊:
- 影响因子:21.100
- 作者:
Xiaoyue Wang;Xiaohong Guo;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Pengfei Wang;Ruwei Yao;Yanchun Li;Congming Li - 通讯作者:
Congming Li
Congming Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Congming Li', 18)}}的其他基金
Qualitative analysis focused on some nonlinear systems
专注于一些非线性系统的定性分析
- 批准号:
1405175 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Proposal: The role of convection on dynamic stability of 3D incompressible Navier-Stokes equations
合作提案:对流对 3D 不可压缩纳维-斯托克斯方程动态稳定性的作用
- 批准号:
0908097 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Qualitative Properties of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程的定性性质
- 批准号:
9970530 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Further Development and Applications of the Method of Moving Planes
数学科学:移动平面方法的进一步发展和应用
- 批准号:
9623390 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: On the Qualitative Properties and Classification of Solutions to Nonlinear Differential Equations
数学科学:论非线性微分方程解的定性性质和分类
- 批准号:
9401441 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: On the Existence and Qualitative Properties of Solutions of Nonlinear Partical Differential Equations
数学科学:论非线性偏微分方程解的存在性及其定性性质
- 批准号:
9003694 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of functional properties of nanoscale interfacial water by nonlinear spectroscopy
通过非线性光谱阐明纳米级界面水的功能特性
- 批准号:
22H00296 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Smart Damage Assessment Tool of Suspension and Cable-Stayed Bridges Through Analysis of Nonlinear Characteristics of the Structural Properties and Energy Cascading to Higher Frequencies
通过分析结构特性的非线性特性和更高频率的能量级联,实现悬索桥和斜拉桥的智能损伤评估工具
- 批准号:
575709-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study on a vibration isolator using post-buckled properties of nonlinear materials
利用非线性材料后屈曲特性的隔振器研究
- 批准号:
22K03999 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
- 批准号:
548072-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
- 批准号:
548072-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Emergent functions based on solution properties of rigid nonlinear polymers
基于刚性非线性聚合物解性质的涌现函数
- 批准号:
20H02788 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Diffractive Properties Based on Nonlinear Optical Effect of Dye-Doped Liquid Crystals
基于染料掺杂液晶非线性光学效应的衍射特性分析
- 批准号:
20J14875 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
- 批准号:
450959503 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Investigation of electromechanically coupled properties and increase in performance of piezoelectric vibration energy harvester by using multi-switching nonlinear circuit
使用多开关非线性电路研究机电耦合特性并提高压电振动能量收集器的性能
- 批准号:
20K04347 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)