Qualitative Properties of Nonlinear Elliptic and Parabolic Equations

非线性椭圆方程和抛物线方程的定性性质

基本信息

  • 批准号:
    9970530
  • 负责人:
  • 金额:
    $ 6.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9970530Congming LiABSTRACTThe PI proposes to study qualitative properties of nonlinearelliptic and parabolic partial differential equations (PDEs), suchas the existence, uniqueness, stability, symmetry, a priori estimates,and asymptotic behavior of solutions. This type of research isfundamental to the understanding of many physical problems governed byPDEs. The PI's will continue the development of a class of verypowerful techniques, namely the Method of Moving Planes, to the studyof local asymptotic symmetry of singular solutions and a prioriestimates of solutions. The PI will also continue the joint work withW. Chen on the geometric problem of finding a conformal metric with aprescribed Gaussian or scalar curvature. The PI is also involvedin the study of certain parabolic systems arising form other branchesof sciences.Many aspects of natural phenomena are related to each other by thenatural laws governing them and very often these relations aremathematically described by differential equations. The study of theseequations is very important in understanding the related phenomena.It is often the case that to solve differential equations computationally with sufficient accuracy, the most effective andeconomical way is to exploit the properties of solutions of the equations and then to develop algorithms in accordance}. Besides beingvery useful in applied science, the study of various kinds ofstructures and properties of solutions to various types of equationsinvariably leads to new research endeavors.
DMS-9970530李聪明研究非线性椭圆和抛物型偏微分方程解的存在性、唯一性、稳定性、对称性、先验估计和渐近性等定性性质。这种类型的研究是理解许多物理问题的基础。PI将继续发展一类非常强大的技术,即移动平面方法,以研究奇异解的局部渐近对称性和解的优先估计。PI还将继续与W. Chen关于求一个具有近似高斯曲率或标量曲率的共形度量的几何问题。PI也参与了其他科学分支中某些抛物系统的研究。自然现象的许多方面都是由控制它们的自然规律相互关联的,而且这些关系通常用微分方程来数学描述。对这些方程的研究对于理解相关现象是非常重要的,通常情况下,要用计算的方法来求解微分方程并达到足够的精度,最有效和最经济的方法是利用方程解的性质,然后根据这些性质发展相应的算法。除了在应用科学中非常有用之外,对各种类型方程的解的各种结构和性质的研究也导致了新的研究努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Congming Li其他文献

Existence of the extremalfuntions for the discrete Hardy-Littlewood-Sobolev Inequality,
离散 Hardy-Littlewood-Sobolev 不等式的极值函数的存在性,
Comparison of linear system solvers applied to diffusion-type finite element equations
  • DOI:
    10.1007/bf01396343
  • 发表时间:
    1989-06-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Anne Greenbaum;Congming Li;Han Zheng Chao
  • 通讯作者:
    Han Zheng Chao
Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains
Modulating the electronic interaction of ZnFe<sub>m</sub>CrO<sub>x</sub>/SAPO-34 to boost CO<sub>2</sub> hydrogenation to light olefins
  • DOI:
    10.1016/j.mcat.2024.114588
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhifan Cao;Xiaohong Guo;Xiaoyue Wang;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Ruwei Yao;Yanchun Li;Congming Li
  • 通讯作者:
    Congming Li
Design of ZnFeAlOsub4/sub/Zn-SAPO-34 composite catalyst for selective hydrogenation of COsub2/sub to propane
用于二氧化碳选择性加氢制丙烷的 ZnFeAlO₄/Zn-SAPO-34 复合催化剂的设计
  • DOI:
    10.1016/j.apcatb.2024.124439
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Xiaoyue Wang;Xiaohong Guo;Peixiang Shi;Zhiqiang Yan;Hongyan Ban;Pengfei Wang;Ruwei Yao;Yanchun Li;Congming Li
  • 通讯作者:
    Congming Li

Congming Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Congming Li', 18)}}的其他基金

Qualitative analysis focused on some nonlinear systems
专注于一些非线性系统的定性分析
  • 批准号:
    1405175
  • 财政年份:
    2014
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: The role of convection on dynamic stability of 3D incompressible Navier-Stokes equations
合作提案:对流对 3D 不可压缩纳维-斯托克斯方程动态稳定性的作用
  • 批准号:
    0908097
  • 财政年份:
    2009
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Qualitative Properties of Nonlinear Differential and Integral Equations or Systems
非线性微分和积分方程或系统的定性性质
  • 批准号:
    0401174
  • 财政年份:
    2004
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Further Development and Applications of the Method of Moving Planes
数学科学:移动平面方法的进一步发展和应用
  • 批准号:
    9623390
  • 财政年份:
    1996
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the Qualitative Properties and Classification of Solutions to Nonlinear Differential Equations
数学科学:论非线性微分方程解的定性性质和分类
  • 批准号:
    9401441
  • 财政年份:
    1994
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the Existence and Qualitative Properties of Solutions of Nonlinear Partical Differential Equations
数学科学:论非线性偏微分方程解的存在性及其定性性质
  • 批准号:
    9003694
  • 财政年份:
    1990
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant

相似海外基金

Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
  • 批准号:
    23K04688
  • 财政年份:
    2023
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of functional properties of nanoscale interfacial water by nonlinear spectroscopy
通过非线性光谱阐明纳米级界面水的功能特性
  • 批准号:
    22H00296
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Smart Damage Assessment Tool of Suspension and Cable-Stayed Bridges Through Analysis of Nonlinear Characteristics of the Structural Properties and Energy Cascading to Higher Frequencies
通过分析结构特性的非线性特性和更高频率的能量级联,实现悬索桥和斜拉桥的智能损伤评估工具
  • 批准号:
    575709-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Study on a vibration isolator using post-buckled properties of nonlinear materials
利用非线性材料后屈曲特性的隔振器研究
  • 批准号:
    22K03999
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
  • 批准号:
    548072-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
  • 批准号:
    548072-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Emergent functions based on solution properties of rigid nonlinear polymers
基于刚性非线性聚合物解性质的涌现函数
  • 批准号:
    20H02788
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Diffractive Properties Based on Nonlinear Optical Effect of Dye-Doped Liquid Crystals
基于染料掺杂液晶非线性光学效应的衍射特性分析
  • 批准号:
    20J14875
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
  • 批准号:
    450959503
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Research Grants
Investigation of electromechanically coupled properties and increase in performance of piezoelectric vibration energy harvester by using multi-switching nonlinear circuit
使用多开关非线性电路研究机电耦合特性并提高压电振动能量收集器的性能
  • 批准号:
    20K04347
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了