Analytical and Numerical Studies of Nonlinear Light Propagation in Two-dimensional Photonic Lattices
二维光子晶格中非线性光传播的分析和数值研究
基本信息
- 批准号:0908167
- 负责人:
- 金额:$ 17.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to investigate novel phenomena of nonlinear light propagation in two-dimensional photonic lattices. In particular, a special important class of solutions (self-trapped nonlinear localized states, often called solitons) of the underlying mathematical models will be studied both analytically and numerically. Three inter-related issues will be investigated: (i) determination and classification of all possible types of soliton states admitted by two-dimensional photonic lattices; (ii) determination of linear stability properties of these solitons; (iii) development of more efficient numerical methods for computing these solitons and their linear-stability eigenvalues. The mathematical models appropriate for these physical problems will be two-dimensional nonlinear Schroedinger equations with periodic or quasi-periodic potentials. Nonlinear optics in periodic and quasi-periodic media is an exciting frontier of optics and applied mathematics these days. With appropriate engineering of micro-scale periodic structures, light propagation can be controlled and steered in various ways. This controlled steering then points to promising technological applications such as micro-scale optical data-processing devices and potential optical chips for ultrafast computers. From a physical viewpoint, this project will lead to a deeper understanding on nonlinear wave phenomena in micro-scale periodic media. From a mathematical viewpoint, these studies will advance the analytical and numerical methodologies for the treatment of nonlinear waves in periodic media. In addition, this research is intimately related to research in areas beyond nonlinear optics, such as Bose-Einstein condensates loaded in optical lattices. The project will facilitate interdisciplinary training of a graduate student in these important areas of research.
本计画的目的是研究二维光子晶格中非线性光传播的新现象。特别是,一个特殊的重要类的解决方案(自陷非线性局域态,通常称为孤子)的基本数学模型将研究分析和数值。三个相互关联的问题将被调查:(i)的所有可能类型的孤子状态的二维光子晶格接纳的确定和分类;(ii)确定这些孤子的线性稳定性;(iii)更有效的数值方法计算这些孤子和他们的线性稳定性特征值的发展。适用于这些物理问题的数学模型将是具有周期或准周期势的二维非线性薛定谔方程。周期和准周期介质中的非线性光学是近年来光学和应用数学的一个令人兴奋的前沿。通过对微尺度周期性结构进行适当的工程设计,可以以各种方式控制和操纵光传播。这种受控转向指向了有前景的技术应用,如微型光学数据处理设备和超高速计算机的潜在光学芯片。从物理学的角度来看,这个项目将导致对微尺度周期性介质中的非线性波动现象的更深入的理解。从数学的角度来看,这些研究将推进在周期性介质中的非线性波的处理的分析和数值方法。此外,这项研究与非线性光学以外的领域的研究密切相关,例如装载在光学晶格中的玻色-爱因斯坦凝聚体。该项目将促进对这些重要研究领域的研究生进行跨学科培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianke Yang其他文献
Nonlinear effects on topologically protected linear modes of Su-Schrieffer-Heeger photonic lattices
Su-Schrieffer-Heeger 光子晶格拓扑保护线性模式的非线性效应
- DOI:
10.1364/cleo_qels.2021.fth4h.3 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mingyao Guo;S. Xia;Nan Wang;Daohong Song;Zhigang Chen;Jianke Yang - 通讯作者:
Jianke Yang
Solitary Waves and Their Linear Stability in Nonlinear Lattices
非线性晶格中的孤立波及其线性稳定性
- DOI:
10.1111/j.1467-9590.2011.00538.x - 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Guenbo Hwang;T. Akylas;Jianke Yang - 通讯作者:
Jianke Yang
Symmetry breaking of solitons in two-dimensional complex potentials.
- DOI:
10.1103/physreve.91.023201 - 发表时间:
2014-10 - 期刊:
- 影响因子:0
- 作者:
Jianke Yang - 通讯作者:
Jianke Yang
Rogue wave patterns associated with Adler-Moser polynomials in the nonlinear Schrödinger equation
与非线性薛定谔方程中的 Adler-Moser 多项式相关的异常波型
- DOI:
10.1016/j.aml.2023.108871 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bo Yang;Jianke Yang - 通讯作者:
Jianke Yang
Eigenfunctions of Linearized Integrable Equations Expanded Around an Arbitrary Solution
- DOI:
10.1111/1467-9590.01428 - 发表时间:
2002-01 - 期刊:
- 影响因子:2.7
- 作者:
Jianke Yang - 通讯作者:
Jianke Yang
Jianke Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianke Yang', 18)}}的其他基金
Mathematical Analysis of Novel Nonlinear Waves in Dissipative Optical Systems
耗散光学系统中新型非线性波的数学分析
- 批准号:
1910282 - 财政年份:2019
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
OP: Mathematical Analysis of Nonlinear Optics in Periodic and Complex Media
OP:周期性和复杂介质中非线性光学的数学分析
- 批准号:
1616122 - 财政年份:2016
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Analytical Studies of Nonlinear Optics in Periodic Media
周期性介质中非线性光学的分析研究
- 批准号:
1311730 - 财政年份:2013
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Effects of Polarization-mode Dispersion on Fiber Communication Systems
偏振模色散对光纤通信系统的影响
- 批准号:
9971712 - 财政年份:1999
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Study of Pulse Propagation in Birefringent Nonlinear Optical Fibers
数学科学:双折射非线性光纤中脉冲传播的研究
- 批准号:
9622802 - 财政年份:1996
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
相似海外基金
Studies of the matrix model for superstring theory by analytical and numerical methods
超弦理论矩阵模型的解析和数值研究
- 批准号:
18K03614 - 财政年份:2018
- 资助金额:
$ 17.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical and numerical studies of gapless fractionalized phases and topological phases and their transformations
无间隙分段相和拓扑相及其变换的分析和数值研究
- 批准号:
1619696 - 财政年份:2016
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Advanced numerical and analytical techniques for exact studies in combinatorics and statistical mechanics
用于组合数学和统计力学精确研究的先进数值和分析技术
- 批准号:
DP120101593 - 财政年份:2012
- 资助金额:
$ 17.65万 - 项目类别:
Discovery Projects
Numerical and analytical studies of geophysical flows and nonlinear waves
地球物理流和非线性波的数值和分析研究
- 批准号:
262971-2007 - 财政年份:2012
- 资助金额:
$ 17.65万 - 项目类别:
Discovery Grants Program - Individual
Analytical and numerical studies of novel fractionalized phases and unusual phase transitions
新颖的碎裂相和异常相变的分析和数值研究
- 批准号:
1206096 - 财政年份:2012
- 资助金额:
$ 17.65万 - 项目类别:
Continuing Grant
Numerical and Analytical studies of Gravity Wave in the Atmosphere
大气中重力波的数值与分析研究
- 批准号:
362433-2008 - 财政年份:2010
- 资助金额:
$ 17.65万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical and analytical studies of geophysical flows and nonlinear waves
地球物理流和非线性波的数值和分析研究
- 批准号:
262971-2007 - 财政年份:2010
- 资助金额:
$ 17.65万 - 项目类别:
Discovery Grants Program - Individual
Numerical and analytical studies of geophysical flows and nonlinear waves
地球物理流和非线性波的数值和分析研究
- 批准号:
262971-2007 - 财政年份:2009
- 资助金额:
$ 17.65万 - 项目类别:
Discovery Grants Program - Individual
Numerical and Analytical studies of Gravity Wave in the Atmosphere
大气中重力波的数值与分析研究
- 批准号:
362433-2008 - 财政年份:2009
- 资助金额:
$ 17.65万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical and analytical studies of geophysical flows and nonlinear waves
地球物理流和非线性波的数值和分析研究
- 批准号:
262971-2007 - 财政年份:2008
- 资助金额:
$ 17.65万 - 项目类别:
Discovery Grants Program - Individual