Mathematical Analysis of Novel Nonlinear Waves in Dissipative Optical Systems

耗散光学系统中新型非线性波的数学分析

基本信息

项目摘要

This project theoretically investigates dissipative nonlinear wave systems in optics, which exhibit novel and counter-intuitive properties such as conservative-like behaviors and unidirectional wave propagation. Examples of such optical systems include certain advanced lasers supporting unidirectional light propagation along the edges of the laser cavity immune to scattering and disorder, which holds promise as an optical diode in the design of optical computers. Other examples include certain dissipative second-harmonic-generation systems featuring soliton families with continuous ranges of powers, which may be exploited for signal processing devices. Properties manifested in such systems are intriguing, and they will be investigated comprehensively in this project. Through advanced mathematical techniques and sophisticated numerical computations, new insight will be gained on the operation of these optical systems, so that their applications for optical diodes and nonlinear data processing can be assessed and optimized. The problems undertaken in this project are at the cutting edge of applied mathematics and optics. Mathematically, this project ventures into the unchartered territory of dissipative systems behaving like conservative systems, which opens new research directions in the study of nonlinear waves. On the physical side, these studies will lead to better understanding of next-generation laser devices, which will have direct applications to many branches of optics and photonics. Educationally, graduate students will be trained, and undergraduate honors thesis and undergraduate summer research will be supervised, so that this project will help train young talents in the STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画从理论上探讨光学中的耗散非线性波动系统,其表现出新颖且违反直觉的性质,例如类保守性行为及单向波传播。这样的光学系统的例子包括某些先进的激光器,其支持沿着激光腔的边缘的单向光传播沿着,不受散射和无序的影响,这有望作为光学计算机设计中的光学二极管。其他例子包括某些耗散二次谐波产生系统,其特征在于具有连续功率范围的孤子族,其可以用于信号处理设备。在这样的系统中表现出的属性是有趣的,他们将在这个项目中进行全面的调查。通过先进的数学技术和复杂的数值计算,这些光学系统的操作将获得新的见解,使其应用于光学二极管和非线性数据处理可以评估和优化。 该项目中研究的问题处于应用数学和光学的前沿。在数学上,该项目冒险进入行为类似保守系统的耗散系统的未知领域,这为非线性波的研究开辟了新的研究方向。在物理方面,这些研究将有助于更好地理解下一代激光器件,这些器件将直接应用于光学和光子学的许多分支。在教育方面,培养研究生,指导本科生荣誉论文和本科生暑期研究,培养STEM领域的年轻人才。该奖项体现了NSF的法定使命,通过基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pattern Transformation in Higher-Order Lumps of the Kadomtsev–Petviashvili I Equation
  • DOI:
    10.1007/s00332-022-09807-8
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bo Yang;Jianke Yang
  • 通讯作者:
    Bo Yang;Jianke Yang
Overview of the Kadomtsev–Petviashvili-hierarchy reduction method for solitons
KadomtsevâPetviashvili 孤子层次约简方法概述
Rogue wave patterns associated with Okamoto polynomial hierarchies
  • DOI:
    10.1111/sapm.12573
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bo Yang;Jianke Yang
  • 通讯作者:
    Bo Yang;Jianke Yang
Universal rogue wave patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy
  • DOI:
    10.1016/j.physd.2021.132958
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Yang;Jianke Yang
  • 通讯作者:
    Bo Yang;Jianke Yang
New families of non-parity-time-symmetric complex potentials with all-real spectra
  • DOI:
    10.1063/1.5124255
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Bagchi;Jianke Yang
  • 通讯作者:
    B. Bagchi;Jianke Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianke Yang其他文献

Solitary Waves and Their Linear Stability in Nonlinear Lattices
非线性晶格中的孤立波及其线性稳定性
  • DOI:
    10.1111/j.1467-9590.2011.00538.x
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Guenbo Hwang;T. Akylas;Jianke Yang
  • 通讯作者:
    Jianke Yang
Nonlinear effects on topologically protected linear modes of Su-Schrieffer-Heeger photonic lattices
Su-Schrieffer-Heeger 光子晶格拓扑保护线性模式的非线性效应
Symmetry breaking of solitons in two-dimensional complex potentials.
Rogue wave patterns associated with Adler-Moser polynomials in the nonlinear Schrödinger equation
与非线性薛定谔方程中的 Adler-Moser 多项式相关的异常波型
  • DOI:
    10.1016/j.aml.2023.108871
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Yang;Jianke Yang
  • 通讯作者:
    Jianke Yang
Eigenfunctions of Linearized Integrable Equations Expanded Around an Arbitrary Solution
  • DOI:
    10.1111/1467-9590.01428
  • 发表时间:
    2002-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jianke Yang
  • 通讯作者:
    Jianke Yang

Jianke Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianke Yang', 18)}}的其他基金

OP: Mathematical Analysis of Nonlinear Optics in Periodic and Complex Media
OP:周期性和复杂介质中非线性光学的数学分析
  • 批准号:
    1616122
  • 财政年份:
    2016
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant
Analytical Studies of Nonlinear Optics in Periodic Media
周期性介质中非线性光学的分析研究
  • 批准号:
    1311730
  • 财政年份:
    2013
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant
Analytical and Numerical Studies of Nonlinear Light Propagation in Two-dimensional Photonic Lattices
二维光子晶格中非线性光传播的分析和数值研究
  • 批准号:
    0908167
  • 财政年份:
    2009
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant
Effects of Polarization-mode Dispersion on Fiber Communication Systems
偏振模色散对光纤通信系统的影响
  • 批准号:
    9971712
  • 财政年份:
    1999
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Study of Pulse Propagation in Birefringent Nonlinear Optical Fibers
数学科学:双折射非线性光纤中脉冲传播的研究
  • 批准号:
    9622802
  • 财政年份:
    1996
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis and quality control of novel mixed cell population for therapeutic development
用于治疗开发的新型混合细胞群的分析和质量控制
  • 批准号:
    10089851
  • 财政年份:
    2024
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Collaborative R&D
ROBIN: Rotation-based Buckling Instability Analysis, and Applications to Creation of Novel Soft Mechanisms
ROBIN:基于旋转的屈曲不稳定性分析及其在新型软机构创建中的应用
  • 批准号:
    24K00847
  • 财政年份:
    2024
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A novel whole-process analysis method for fractured rock slopes
裂隙岩质边坡全过程分析新方法
  • 批准号:
    DP230100126
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Discovery Projects
Identification and analysis of a novel pattern-recognition receptor that senses intracellular bacterial components
感知细胞内细菌成分的新型模式识别受体的鉴定和分析
  • 批准号:
    23H02715
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional Analysis of Girdin in Anticancer Drug-Resistant Pancreatic Cancer and Its Application to Novel Therapeutic Agents
Girdin在抗癌药物耐药性胰腺癌中的功能分析及其在新型治疗药物中的应用
  • 批准号:
    23K08138
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Standard Grant
Elucidation of Novel Therapeutic Targets for Primary Intraocular Malignant Lymphoma Based on Analysis of B Cells within Tertiary Lymphoid Structures
基于三级淋巴结构内 B 细胞的分析阐明原发性眼内恶性淋巴瘤的新治疗靶点
  • 批准号:
    23K15921
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Comprehensive Examination of Novel Risk Factors for Development of Lifestyle-related Diseases by Metallomics Analysis by Molecular Weight
通过分子量金属组学分析全面检查生活方式相关疾病发生的新危险因素
  • 批准号:
    23K17444
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Analysis of the mechanism of hemolytic anemia in canine babesiosis and development of novel therapeutic measures
犬巴贝斯虫病溶血性贫血机制分析及新治疗措施开发
  • 批准号:
    23KJ0074
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 29.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了