OP: Mathematical Analysis of Nonlinear Optics in Periodic and Complex Media
OP:周期性和复杂介质中非线性光学的数学分析
基本信息
- 批准号:1616122
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light propagation in periodic media and media with balanced gain and loss is at the frontier of research in optics and applied mathematics. Periodic media, such as photonic crystals or media with periodically changing refractive index, can be manipulated to control light's propagation and achieve, for example, light trapping and routing. Progress in this area of research has promising applications for on-chip data processing at microscopic scales. By judiciously balancing the gain and loss in the so-called parity-time-symmetric configurations, one can induce the light to behave in novel ways, giving rise to a possibility of "optical diodes." Such an optical diode that is capable of transmitting a signal in only one direction would be an elemental base of optical computers. In this project, novel nonlinear behavior of light in periodic media and gain-loss-balanced media are theoretically investigated. By developing new mathematical methodologies, new insight will be gained on the nonlinear propagation of light in such media, so that their application for data processing can be assessed. From a broader perspective, this project will facilitate training of a graduate student in this important interdisciplinary area.The problems undertaken in this project are at the cutting edge of applied mathematics and optics. On the mathematical side, this project will develop novel mathematical methodologies for the treatment of contemporary nonlinear optics problems, such as a sophisticated exponential asymptotics technique for the bifurcation and linear stability of lump solitons in two-dimensional periodic media. On the physical side, the mathematical results from this project will allow us to assess the potential of optical solitons for various physical applications such as data processing on microscopic periodic structures. In addition, the theoretical investigation of actual parity-time-symmetric single-mode lasers could directly impact the nonlinear operation of those lasers and may lead to more advanced laser devices.
光在周期性介质和增益损耗平衡介质中的传播是光学和应用数学研究的前沿。周期性介质,如光子晶体或具有周期性折射率变化的介质,可以被操纵来控制光的传播并实现,例如,光捕获和路由。这一领域的研究进展对微观尺度上的片上数据处理有很大的应用前景。通过平衡所谓的奇偶时间对称结构中的增益和损失,人们可以诱导光以新颖的方式表现,从而产生“光学二极管”的可能性。这种只能向一个方向传输信号的光学二极管将成为光学计算机的基本基础。本课题从理论上研究了光在周期性介质和损益平衡介质中的非线性行为。通过发展新的数学方法,将获得关于光在这种介质中的非线性传播的新见解,从而可以评估它们在数据处理中的应用。从更广泛的角度来看,该项目将有助于在这一重要的跨学科领域培养研究生。本课题研究的问题是应用数学和光学领域的前沿问题。在数学方面,该项目将开发新的数学方法来处理当代非线性光学问题,例如二维周期介质中块状孤子的分岔和线性稳定性的复杂指数渐近技术。在物理方面,这个项目的数学结果将使我们能够评估光孤子在各种物理应用中的潜力,例如微观周期结构的数据处理。此外,对实际的奇偶时间对称单模激光器的理论研究可以直接影响这些激光器的非线性工作,并可能导致更先进的激光设备。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianke Yang其他文献
Solitary Waves and Their Linear Stability in Nonlinear Lattices
非线性晶格中的孤立波及其线性稳定性
- DOI:
10.1111/j.1467-9590.2011.00538.x - 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Guenbo Hwang;T. Akylas;Jianke Yang - 通讯作者:
Jianke Yang
Nonlinear effects on topologically protected linear modes of Su-Schrieffer-Heeger photonic lattices
Su-Schrieffer-Heeger 光子晶格拓扑保护线性模式的非线性效应
- DOI:
10.1364/cleo_qels.2021.fth4h.3 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mingyao Guo;S. Xia;Nan Wang;Daohong Song;Zhigang Chen;Jianke Yang - 通讯作者:
Jianke Yang
Symmetry breaking of solitons in two-dimensional complex potentials.
- DOI:
10.1103/physreve.91.023201 - 发表时间:
2014-10 - 期刊:
- 影响因子:0
- 作者:
Jianke Yang - 通讯作者:
Jianke Yang
Rogue wave patterns associated with Adler-Moser polynomials in the nonlinear Schrödinger equation
与非线性薛定谔方程中的 Adler-Moser 多项式相关的异常波型
- DOI:
10.1016/j.aml.2023.108871 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bo Yang;Jianke Yang - 通讯作者:
Jianke Yang
Eigenfunctions of Linearized Integrable Equations Expanded Around an Arbitrary Solution
- DOI:
10.1111/1467-9590.01428 - 发表时间:
2002-01 - 期刊:
- 影响因子:2.7
- 作者:
Jianke Yang - 通讯作者:
Jianke Yang
Jianke Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianke Yang', 18)}}的其他基金
Mathematical Analysis of Novel Nonlinear Waves in Dissipative Optical Systems
耗散光学系统中新型非线性波的数学分析
- 批准号:
1910282 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Analytical Studies of Nonlinear Optics in Periodic Media
周期性介质中非线性光学的分析研究
- 批准号:
1311730 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Analytical and Numerical Studies of Nonlinear Light Propagation in Two-dimensional Photonic Lattices
二维光子晶格中非线性光传播的分析和数值研究
- 批准号:
0908167 - 财政年份:2009
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Effects of Polarization-mode Dispersion on Fiber Communication Systems
偏振模色散对光纤通信系统的影响
- 批准号:
9971712 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical Sciences: Study of Pulse Propagation in Birefringent Nonlinear Optical Fibers
数学科学:双折射非线性光纤中脉冲传播的研究
- 批准号:
9622802 - 财政年份:1996
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems
ARC 细胞系统数学分析卓越中心
- 批准号:
CE230100001 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
ARC Centres of Excellence
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Studentship
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
- 批准号:
22KJ2953 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
- 批准号:
23K03225 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246724 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
- 批准号:
2306254 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant