Periodic and Large Amplitude Solutions for the compressible Euler equations

可压缩欧拉方程的周期解和大振幅解

基本信息

  • 批准号:
    0908190
  • 负责人:
  • 金额:
    $ 12.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the propagation of nonlinear waves in the inviscid Euler equations, which describe conservation of mass, momentum and energy in a continuous medium. The dominant feature of solutions is the presence of shock waves, which present both physical and mathematical difficulties. Two fundamental problems are considered: first is the extension of the Glimm-Lax existence and decay theory to solutions having large amplitude. This problem necessitates an analysis of multiple wave interactions up to and including the vacuum, where the system is singular. The second problem concerns the existence of shock-free periodic solutions which do not dissipate energy. These arise from multiple reflections of nonlinear waves together with a nonlinear superposition principle, and lead to problems of small divisors.Shock waves are characterized by an abrupt, nearly discontinuous change in the characteristics of the medium. Across a shock moving, for example in the air there is always an extremely rapid rise in pressure, temperature and of the flow. Shock waves occur naturally in many physical systems, and are closely associated with the decay of solutions and dissipation of energy; a well-known manifestation of a decaying shock wave is a sonic boom. The celebrated Glimm-Lax theory precisely describes this decay for small amplitude solutions of two equations, neglecting higher order effects such as viscosity and heat loss; the theory is routinely assumed to hold in much wider contexts. The first part of this project extends and confirms the Glimm-Lax theory for waves of arbitrary strength described by systems of two equations. The second part of the project reveals the surprising conclusion that there are solutions which do not form shock waves and thus do not decay. In particular, this research indicates that in larger systems multiple wave reflection effects slow down the formation of shocks and the subsequent dissipation of energy. Controllability of these effects would have many consequences, including applications to long-range signaling and airplane design.
本项目主要研究无粘欧拉方程中的非线性波的传播,该方程描述了连续介质中的质量、动量和能量守恒。解的主要特征是存在冲击波,这既有物理上的困难,也有数学上的困难。考虑了两个基本问题:一是Glimm-lax存在性和衰减性理论推广到大振幅解。这个问题需要对包括真空在内的多波相互作用进行分析,在真空中,系统是奇异的。第二个问题涉及不耗散能量的无激波周期解的存在性。这些波动是由非线性波的多次反射和非线性叠加原理引起的,并导致小因子的问题。冲击波的特征是介质特性的突然、几乎不连续的变化。在激波运动中,例如在空气中,压力、温度和气流总是会极其迅速地上升。冲击波自然地出现在许多物理系统中,并与溶液的衰减和能量的耗散密切相关;衰减冲击波的一个众所周知的表现是音爆。著名的Glimm-Lax理论精确地描述了两个方程的小幅度解的这种衰减,忽略了粘性和热损失等更高阶的影响;该理论通常被认为在更广泛的背景下适用。本项目的第一部分推广并证实了由两个方程组描述的任意强度波的Glimm-Lax理论。该项目的第二部分揭示了一个令人惊讶的结论,即存在不会形成冲击波的解决方案,因此不会衰减。特别是,这项研究表明,在更大的系统中,多次波反射效应减缓了激波的形成和随后的能量耗散。这些效应的可控性将产生许多后果,包括应用于远程信号和飞机设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Young其他文献

Field Longevity of a Fluorescent Protein Marker in an Engineered Strain of the Pink Bollworm, Pectinophora gossypiella (Saunders)
红棉铃虫工程菌株中荧光蛋白标记的现场寿命,Pectinophora gossypiella (Saunders)
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Walters;N. Morrison;J. Claus;G. Tang;Caroline E. Phillips;Robin Young;R. Zink;L. Alphey
  • 通讯作者:
    L. Alphey
86 - Analyses of real-world data on patient outcomes in South Yorkshire, for patients with metastatic non-squamous lung cancer treated with pembrolizumab plus pemetrexed-platinum-based chemotherapy
86 - 对南约克郡转移性非鳞状细胞肺癌患者使用派姆单抗联合培美曲塞-铂类化疗后患者结局的真实世界数据进行分析
  • DOI:
    10.1016/s0169-5002(23)00513-5
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Yan Ling Pang Pang;Danielle Meehan;Patricia Fisher;Matthew Hatton;Tony Matthews;Caroline Lee;Tathagata Das;Robin Young;Emma Bates;Fiona Taylor;Faruk Abu
  • 通讯作者:
    Faruk Abu
Wave Interactions in Nonlinear Elastic Strings
In Vitro Techniques
体外技术
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Harris;G. Almouzni;D. Kirschner;D. Dimitrova;J. Nickerson;J. M. Underwood;S. Wagner;Barbara Korbei;R. Foisner;T. Walther;M. Hetzer;R. Peters;I. Walev;A. Kroon;R. Staffhorst;B. Kruijff;Koert N. J. Burger;L. Netto;É. Bertrand;J. Alimonti;A. Greenberg;Jinnan Xiao;Anuradha R. Pradhan;Yuechueng Liu;J. Paiement;Robin Young;F. Goñi;A. Villar;F. Contreras;A. Alonso;B. Peter;I. Mills;M. Higgins;W. J. Brown;K. Chambers;A. Doody;C. Cheng;D. Mruk;Chunhong Yang;H. Kirchhoff;W. Haase;Stephanie Boggasch;H. Paulsen;J. Benešová;S. Liffers;M. Rögner;Ya‐sheng Gao;E. Sztul;M. Thiemann;H. Fahimi;R. Gniadecki;B. Gajkowska;S. Bane;J. Hess;J. Voss;P. Fitzgerald;S. Hisanaga;Takahiro Sasaki;K. Ueda;T. Town;Jun Tan;N. Milton;Richard J. Chi;T. Keller;M. Kriajevska;I. Bronstein;E. Lukanidin;D. Holmes;K. Kadler
  • 通讯作者:
    K. Kadler
Common Lymphoid Progenitors and B Cell Subpopulations in the Bone Marrow Are Predictive of Treatment-Free Remission in Chronic Myeloid Leukemia
  • DOI:
    10.1182/blood-2024-204864
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Shaun D. Patterson;Isla Nosratzadeh;Robin Young;Alan Hair;Jennifer Cassels;Richard E. Clark;Heather G Jørgensen;Helen Wheadon;Mhairi Copland
  • 通讯作者:
    Mhairi Copland

Robin Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Young', 18)}}的其他基金

Fluid Dynamics With Large BV Data
具有大量 BV 数据的流体动力学
  • 批准号:
    0507884
  • 财政年份:
    2005
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
Wave Interactions in Continuum Mechanics
连续介质力学中的波相互作用
  • 批准号:
    0104485
  • 财政年份:
    2001
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
  • 批准号:
    24K07332
  • 财政年份:
    2024
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large amplitude fluctuations in flow over mountains
山区流量波动幅度大
  • 批准号:
    23H01240
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of ultrasound field generator with large apertures embedded in indoor environment by electronic control of emission amplitude distribution
通过电子控制发射幅度分布开发嵌入室内环境的大孔径超声场发生器
  • 批准号:
    23K18488
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236159
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236160
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
Sculpturing quantum wave packets of large-amplitude molecular vibration: Design, control, and visualization of isomerization reactions
雕刻大振幅分子振动的量子波包:异构化反应的设计、控制和可视化
  • 批准号:
    22H00312
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Large-Amplitude Oscillatory Shear Flow of Polymeric Liquids
聚合物液体的大振幅振荡剪切流
  • 批准号:
    RGPIN-2016-05729
  • 财政年份:
    2021
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Discovery Grants Program - Individual
Generating Stable Repetitive Motion of Underactuated Robotic Systems Using Large-Amplitude Short-Duration Control Forces
使用大振幅短时控制力生成欠驱动机器人系统的稳定重复运动
  • 批准号:
    2043464
  • 财政年份:
    2021
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
Large-Amplitude Oscillatory Shear Flow of Polymeric Liquids
聚合物液体的大振幅振荡剪切流
  • 批准号:
    RGPIN-2016-05729
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了