Generating Stable Repetitive Motion of Underactuated Robotic Systems Using Large-Amplitude Short-Duration Control Forces
使用大振幅短时控制力生成欠驱动机器人系统的稳定重复运动
基本信息
- 批准号:2043464
- 负责人:
- 金额:$ 34.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will promote the progress of science and advance the national prosperity and national defense, by studying generation of stable repetitive motion for underactuated robotic systems. Underactuated mechanical systems are those that have fewer control inputs than the number of their degrees-of-freedom. Underactuation appears naturally in many systems such as missiles, satellites, underwater vehicles and biped robots. Repetitive motion is very common in underactuated robotic systems that undergo locomotion, such as underwater vehicles and biped robots, and maintaining stability is paramount for safe and reliable operation. The objective of this research is to generate stable repetitive motion of underactuated robotic systems by incorporating large-amplitude, short-duration control forces, commonly referred to as impulsive forces. Although the effect of impulsive forces has been studied in diverse dynamical systems, the majority of the studies have been limited to theoretical investigations. This research will have a significant experimental component and will translate impulsive control of dynamical systems from theory to practice by addressing the challenges of implementation. In addition to scientific and technological advances, this project will have broad impact through integration of research and education, diversity, and outreach. The project will provide research experience for undergraduate students and dissertation topics for graduate students and thereby contribute towards the development of the future generation of engineers and academics.Repetitive motion is common in underactuated robotic systems and their ability to reject disturbances depends on the stability property of the orbit. This research will eliminate the limitations of current approaches to orbital stabilization of underactuated systems by including impulsive inputs in the set of admissible controls. For underactuated systems that are not subjected to impact, current approaches require controllability of the system to be checked at every point on the orbit and controller gains to be computed online by solving a periodic Ricatti differential equation. The approach in this research, which uses both continuous and impulsive inputs, will result in a linear time-invariant system and reduce the computational cost and complexity of control design. It will also allow estimation of the region of attraction around the orbit, which will be used to determine the optimal location for application of the impulsive inputs. To consider systems that are subjected to impact, the research will focus on bipeds, where both continuous and impulsive inputs will be used for gait stabilization; and the devil-stick, where only impulsive inputs will used. For bipeds, current approaches use numerical methods to search for stable gaits. This research will design nominal gaits analytically. It will be possible to easily check the stability and controllability of a nominal gait and tune controller parameters to obtain controllable gaits. Impact-free nominal gaits will ensure that energy loss and hardware wear and tear due to impact will be minimized. For the devil-stick, purely impulsive control will be designed for a variety of juggling problems. The analytical and experimental investigations will lead to new modalities of non-prehensile manipulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目通过研究欠驱动机器人系统稳定重复运动的生成,将促进科学进步,促进国家富强和国防建设。欠驱动机械系统是指那些控制输入少于其自由度的系统。在许多系统中,如导弹、卫星、水下航行器和双足机器人,驱动不足是很自然的。重复运动在进行运动的欠驱动机器人系统中非常常见,例如水下航行器和双足机器人,保持稳定性对于安全可靠的运行至关重要。本研究的目的是通过结合大振幅、短时间的控制力(通常称为冲力)来产生欠驱动机器人系统的稳定重复运动。虽然在各种动力系统中对冲力的影响进行了研究,但大多数研究都局限于理论研究。这项研究将有一个重要的实验组成部分,并将通过解决实施的挑战,将动力系统的脉冲控制从理论转化为实践。除了科学和技术进步之外,该项目还将通过研究和教育、多样性和外联的整合产生广泛的影响。该项目将为本科生提供研究经验,为研究生提供论文题目,从而为下一代工程师和学者的发展做出贡献。重复运动在欠驱动机器人系统中很常见,其抗扰能力取决于轨道的稳定性。本研究通过在可接受控制集中加入脉冲输入,消除了当前欠驱动系统轨道稳定方法的局限性。对于不受冲击的欠驱动系统,目前的方法需要在轨道上的每个点检查系统的可控性,并通过求解周期Ricatti微分方程在线计算控制器增益。该方法同时使用连续和脉冲输入,将产生线性时不变系统,并降低控制设计的计算成本和复杂性。它还将允许估计轨道周围的吸引力区域,这将用于确定脉冲输入应用的最佳位置。考虑到受到冲击的系统,研究将集中在两足动物上,其中连续和脉冲输入将用于步态稳定;和魔鬼棒,只有脉冲输入将被使用。对于两足动物,目前的方法是用数值方法来寻找稳定的步态。本研究将对标称步态进行解析设计。它可以很容易地检查一个标称步态的稳定性和可控性,并调整控制器参数以获得可控的步态。无冲击标称步态将确保能量损失和硬件磨损由于冲击将被最小化。对于魔鬼棒,纯粹的脉冲控制将被设计用于各种杂耍问题。分析和实验研究将导致非握握性操纵的新模式。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-prehensile manipulation of a devil-stick: planar symmetric juggling using impulsive forces
- DOI:10.1007/s11071-021-06254-0
- 发表时间:2021-02
- 期刊:
- 影响因子:5.6
- 作者:N. Kant;R. Mukherjee
- 通讯作者:N. Kant;R. Mukherjee
Stabilization of energy level sets of underactuated mechanical systems exploiting impulsive braking
- DOI:10.1007/s11071-021-06831-3
- 发表时间:2021-05
- 期刊:
- 影响因子:5.6
- 作者:N. Kant;R. Mukherjee;H. Khalil
- 通讯作者:N. Kant;R. Mukherjee;H. Khalil
Juggling a Devil-Stick: Hybrid Orbit Stabilization Using the Impulse Controlled Poincaré Map
玩弄魔鬼棒:使用脉冲控制庞加莱图实现混合轨道稳定
- DOI:10.1109/lcsys.2021.3091935
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Kant, Nilay;Mukherjee, Ranjan
- 通讯作者:Mukherjee, Ranjan
Nonprehensile manipulation of a stick using impulsive forces
- DOI:10.1007/s11071-022-07826-4
- 发表时间:2022-02
- 期刊:
- 影响因子:5.6
- 作者:Aakash Khandelwal;N. Kant;R. Mukherjee
- 通讯作者:Aakash Khandelwal;N. Kant;R. Mukherjee
Spatial Variation of the Coefficient of Restitution for Frictionless Impacts on Circular Beams
圆梁无摩擦冲击恢复系数的空间变化
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Khandelwal, A.;Mukherjee, R.
- 通讯作者:Mukherjee, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranjan Mukherjee其他文献
Force–displacement characteristics of circular-shaped massless elastica
- DOI:
10.1007/s00707-020-02766-9 - 发表时间:
2020-08-18 - 期刊:
- 影响因子:2.900
- 作者:
Sheryl Chau;Ranjan Mukherjee - 通讯作者:
Ranjan Mukherjee
Prevention ou traitement de diabetes non insulinodependants ou de maladies cardiovasculaires avec des modulateurs ppar
非胰岛素依赖性糖尿病或心血管疾病和调节剂的预防或治疗
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Johan Auwerx;Michael R. Briggs;Ranjan Mukherjee;James R. Paterniti;B. Stael - 通讯作者:
B. Stael
Generating stable periodic motion in underactuated systems in the presence of parameter uncertainty: Theory and experiments
在存在参数不确定性的欠驱动系统中生成稳定的周期运动:理论和实验
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Kant;Ranjan Mukherjee - 通讯作者:
Ranjan Mukherjee
MEMS implementation of axial and follower end forces
- DOI:
10.1016/j.jsv.2004.12.010 - 发表时间:
2005-09-06 - 期刊:
- 影响因子:
- 作者:
Abhyudai Singh;Ranjan Mukherjee;Kimberly Turner;Steven Shaw - 通讯作者:
Steven Shaw
Effect of intermediate support on critical stability of a cantilever with non-conservative loading: Some new results
- DOI:
10.1016/j.jsv.2020.115564 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:
- 作者:
Mahmoud Abdullatif;Ranjan Mukherjee - 通讯作者:
Ranjan Mukherjee
Ranjan Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranjan Mukherjee', 18)}}的其他基金
FW-HTF-RL: Improving Disability Inclusion in the Workforce Through Assessment and Augmentation of Individual Abilities and Workflow Redesign in Real-World Contexts
FW-HTF-RL:通过评估和增强个人能力以及现实世界中的工作流程重新设计,改善劳动力中的残疾人包容性
- 批准号:
2326227 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
A High Degree-of-Freedom Body-Machine Interface for Children with Severe Motor Impairments
为患有严重运动障碍的儿童提供高自由度的身体-机器接口
- 批准号:
1703735 - 财政年份:2017
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Analysis of Large Amplitude, Short Duration Control Forces for Guiding Underactuated Mechanical Systems into Safe Operating Regions
用于引导欠驱动机械系统进入安全运行区域的大振幅、短持续时间控制力分析
- 批准号:
1462118 - 财政年份:2015
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Synergistically Propelled Ichthyoid (SPI): Dynamics Investigation for Improved Performance
协同推进鱼状体 (SPI):提高性能的动力学研究
- 批准号:
1131170 - 财政年份:2011
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Impulsive Control of Under-Actuated Dynamical Systems
欠驱动动力系统的脉冲控制
- 批准号:
0925055 - 财政年份:2009
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Planning a Visit to the University of Tokyo for Collaboration on Humanoid Robotics Research
计划访问东京大学,开展人形机器人研究合作
- 批准号:
0609094 - 财政年份:2006
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Enhancing Controllability and Observability in Under-Actuated/Under-Sensed Systems through Switching: Application to Vibration Control
通过切换增强欠驱动/欠感系统的可控性和可观测性:振动控制的应用
- 批准号:
0409388 - 财政年份:2004
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Dynamics and Control of a Self-Reconfiguring Sphere Leading to the Design of a Spherical Mobile Robot
自重构球体的动力学和控制导致球形移动机器人的设计
- 批准号:
9800343 - 财政年份:1998
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
RIA: Repeatability in Nonholonomic Mechanical Systems
RIA:非完整机械系统的可重复性
- 批准号:
9796144 - 财政年份:1996
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
RIA: Repeatability in Nonholonomic Mechanical Systems
RIA:非完整机械系统的可重复性
- 批准号:
9410157 - 财政年份:1994
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
相似国自然基金
超α-stable过程及相关过程的大偏差理论
- 批准号:10926110
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
与稳定(Stable)过程有关的极限定理
- 批准号:10901054
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
- 批准号:40871199
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
- 批准号:
24K15592 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GreenPerovs: Green, Efficient, and Stable Halide Perovskites for Heterogeneous Photocatalysis
GreenPerovs:用于多相光催化的绿色、高效、稳定的卤化物钙钛矿
- 批准号:
EP/Y029291/1 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Fellowship
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303524 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Research Grant
CAREER: Identifying reaction mechanisms for the formation of stable interphases in lithium metal batteries
职业:确定锂金属电池中形成稳定界面的反应机制
- 批准号:
2338202 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Towards Stable and Highly Efficient Lead-Free Tin-based Perovskite Solar Cells
迈向稳定高效的无铅锡基钙钛矿太阳能电池
- 批准号:
23K23457 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)