Geometry of Nonlinear Control with Applications
非线性控制几何及其应用
基本信息
- 批准号:0908204
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates the geometric and algebraic foundations of continuous families of infinitesimally noncommuting flows. It combines a functional analytic operator calculus known as chronological calculus together with methods from algebraic combinatorics. The first of two parts of this project focuses on smooth systems governed by nonlinear ordinary differential equations. Utilizing novel combinatorial structures such as Zinbiel and dendriform algebras, it unifies and systematizes solution techniques for a number of classical problems that include state-space realization of systems, applications to path planning, control of quantum systems, and geometric integration algorithms in scientific computing. The second part is motivated by a practical control problem from semiconductor manufacturing and aims to extend proven approaches and methodologies to infinite dimensional systems that are governed by nonlinear systems of hyperbolic conservation laws.This project studies the common mathematical structures underlying a distinguishing feature of many dynamical systems of practical importance: flows that do not commute. This research has broad applications. These include: Control designs exploit this feature to steer systems to any desired states by judiciously choosing the order in which control actions are taken. In splitting methods of scientific computing the lack of commutativity of the pieces is a complication that needs to managed. For quantum mechanical systems the lack of commutativity is in many ways the very essence of their nature. Beyond the immediate contributions of theoretical insights, improved control designs and high performance computing algorithms, this project improves the education and technological infrastructure both horizontally and vertically: It connects combinatorics, control, and computation, with each other and with applications in molecular physics, biomedical and manufacturing systems. It trains graduate students, provide undergraduates with meaningful first-hand research experiences, and it collaborates with existing initiatives to train participants from traditionally underrepresented groups.
本计画研究无穷小非交换流之连续族之几何与代数基础。 它结合了一个功能分析算子演算称为时序演算与方法从代数组合。 这个项目的两个部分中的第一部分集中在由非线性常微分方程控制的光滑系统上。 利用新的组合结构,如Zinbiel和dendriform代数,它统一和系统化的解决方案技术的一些经典问题,包括系统的状态空间实现,路径规划的应用,量子系统的控制,和几何积分算法在科学计算。 第二部分的动机是从半导体制造的实际控制问题,并旨在扩展已证明的方法和方法,以无穷维系统,由双曲守恒律的非线性系统。该项目研究的共同数学结构下的一个显着特点,许多动力系统的实际重要性:流不交换。 这项研究具有广泛的应用。其中包括:控制设计利用这一特性,通过明智地选择控制动作的顺序,将系统引导到任何期望的状态。 在科学计算的分裂方法中,缺乏部分的可交换性是一个需要管理的复杂性。 对量子力学系统而言,缺乏交换性在许多方面是其本质。 除了理论见解,改进的控制设计和高性能计算算法的直接贡献外,该项目还在横向和纵向上改善了教育和技术基础设施:它将组合学,控制和计算相互连接起来,并与分子物理,生物医学和制造系统中的应用相结合。 它培训研究生,为本科生提供有意义的第一手研究经验,并与现有的举措合作,培训传统上代表性不足的群体的参与者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Kawski其他文献
Matthias Kawski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Kawski', 18)}}的其他基金
Trimester in Combinatorics and Control COCO 2010
组合学和控制三个学期 COCO 2010
- 批准号:
0960589 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Chronological Calculus and Nonlinear Control
时间演算和非线性控制
- 批准号:
0509030 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IGMS: Optimizing Supply Networks and Re-Entrant Manufacturing Systems in the Semiconductor Industry
IGMS:优化半导体行业的供应网络和可重入制造系统
- 批准号:
0107666 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Geometry and Algebra of Nonlinear Control Systems
非线性控制系统的几何和代数
- 批准号:
0072369 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Vector Calculus via Linearization: Visualization and ModernApplications
通过线性化进行向量微积分:可视化和现代应用
- 批准号:
9752453 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry of highly nonlinear multi-input systems
数学科学:高度非线性多输入系统的几何
- 批准号:
9308289 - 财政年份:1993
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Highly Nonlinear Control Systems
数学科学:高度非线性控制系统的几何
- 批准号:
9007547 - 财政年份:1990
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Highly Nonlinear Control Systems
数学科学:高度非线性控制系统的几何
- 批准号:
8805815 - 财政年份:1988
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
- 批准号:
22KJ0981 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
- 批准号:
2316622 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
Ultrasensitive mass sensing utilizing weakly-coupled micro resonators' mode localization, with nonlinear feedback control
利用弱耦合微谐振器的模式定位和非线性反馈控制的超灵敏质量传感
- 批准号:
22KJ0428 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast and Precise Positioning Control for Industrial Robots Including Nonlinear Flexibility in Mechanism and Task Environment
工业机器人快速精确的定位控制,包括机构和任务环境中的非线性灵活性
- 批准号:
23H00181 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Parametric deformation of control Lyapunov function for nonlinear systems and its applications
非线性系统控制Lyapunov函数的参数变形及其应用
- 批准号:
23H01430 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
- 批准号:
EP/W032236/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant