Vector Calculus via Linearization: Visualization and ModernApplications

通过线性化进行向量微积分:可视化和现代应用

基本信息

  • 批准号:
    9752453
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-01-15 至 2000-12-31
  • 项目状态:
    已结题

项目摘要

This project is developing a radically new approach to vector calculus that is completely aligned with recent reform efforts in other college entry-level math, science, and engineering (MSE) courses. As part of this larger MSE curriculum, it brings more coherence and consistency to it, emphasizing the common foundation for much of these courses. Sophisticated computer visualization is vigorously exploited as it has opened a completely new avenue to vector calculus, allowing to reconnect the concepts of vectorial derivatives back to their foundation, local linearity. Students now can see the curl by zooming. Connections to concepts of linear algebra and differential equations perspectives are omnipresent. The curriculum is ideally suited for cooperative learning environments where students are guided to make many key discoveries themselves via often dramatic computer experiments. The new course is also broadening the range of applications (beyond the traditional EM and fluid dynamics) by drawing on modern geometric control which has ubiquitous applications, even connecting to recent research achievements that fit into this sophomore course. The curriculum is being implemented in the form of interactive texts, and is using modern electronic media and the WWW for rapid dissemination. Assessment of the enhanced learning experiences is an integral part of the project. This curriculum is having a high impact on both MSE majors and future math and science teachers by conveying a coherent and modern view of advanced mathematics.
这个项目正在开发一种全新的矢量微积分方法,与最近其他大学入门级数学、科学和工程(MSE)课程的改革努力完全一致。作为这个更大的MSE课程的一部分,它带来了更多的连贯性和一致性,强调了这些课程的共同基础。复杂的计算机可视化被大力开发,因为它为矢量微积分开辟了一条全新的途径,允许将矢量导数的概念重新连接到它们的基础局部线性。现在,学生们可以通过缩放看到卷曲。与线性代数和微分方程式概念的联系无处不在。该课程非常适合于合作学习环境,在这种环境中,学生被引导通过通常是戏剧性的计算机实验自己做出许多关键发现。这门新课程还拓宽了应用范围(超越传统的电磁和流体动力学),利用了应用无处不在的现代几何控制,甚至结合了这门二年级课程的最新研究成果。该课程正在以互动文本的形式实施,并利用现代电子媒体和万维网迅速传播。评估增强的学习体验是该项目的一个组成部分。这门课程传达了一种连贯而现代的高等数学观,对MSE专业的学生和未来的数学和科学教师都产生了很大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Kawski其他文献

Matthias Kawski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Kawski', 18)}}的其他基金

Trimester in Combinatorics and Control COCO 2010
组合学和控制三个学期 COCO 2010
  • 批准号:
    0960589
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Geometry of Nonlinear Control with Applications
非线性控制几何及其应用
  • 批准号:
    0908204
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Chronological Calculus and Nonlinear Control
时间演算和非线性控制
  • 批准号:
    0509030
  • 财政年份:
    2005
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
IGMS: Optimizing Supply Networks and Re-Entrant Manufacturing Systems in the Semiconductor Industry
IGMS:优化半导体行业的供应网络和可重入制造系统
  • 批准号:
    0107666
  • 财政年份:
    2002
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Geometry and Algebra of Nonlinear Control Systems
非线性控制系统的几何和代数
  • 批准号:
    0072369
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry of highly nonlinear multi-input systems
数学科学:高度非线性多输入系统的几何
  • 批准号:
    9308289
  • 财政年份:
    1993
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Highly Nonlinear Control Systems
数学科学:高度非线性控制系统的几何
  • 批准号:
    9007547
  • 财政年份:
    1990
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Highly Nonlinear Control Systems
数学科学:高度非线性控制系统的几何
  • 批准号:
    8805815
  • 财政年份:
    1988
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似海外基金

Molecular pathological analysis of periodontal tissue destruction caused by dental calculus via NLRP3 inflammasome
NLRP3炎症小体对牙结石引起牙周组织破坏的分子病理学分析
  • 批准号:
    22K21019
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Schubert calculus via cluster categories
通过簇类别的舒伯特微积分
  • 批准号:
    EP/W017881/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Study on quantum invariants via graphical calculus and its applications
基于图解的量子不变量研究及其应用
  • 批准号:
    19J00252
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Variational Data Assimilation via Calculus of Variations in L^infinity
通过 L^无穷变分演算进行变分数据同化
  • 批准号:
    2272180
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Studentship
Research on mathematical expressions and numerical methods for optimal hedging strategies via Malliavin calculus
基于Malliavin微积分的最优对冲策略的数学表达式和数值方法研究
  • 批准号:
    15K04936
  • 财政年份:
    2015
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Sequential Analysis via Stochastic Calculus and It's Application
随机微积分统计序列分析及其应用
  • 批准号:
    15K03395
  • 财政年份:
    2015
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of the embedding spaces via configuration space integrals, operads and the calculus of functors
通过配置空间积分、操作数和函子微积分实现嵌入空间的拓扑
  • 批准号:
    23840015
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Density and tail estimates via Malliavin calculus, and applications
通过 Malliavin 演算进行密度和尾部估计以及应用
  • 批准号:
    0907321
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RUI: Embedding spaces via calculus of functors and generalizations of finite type invariants
RUI:通过函子演算和有限类型不变量的推广来嵌入空间
  • 批准号:
    0805406
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Enhancing Student Preparation for Calculus via a Web-Based Homework System
通过基于网络的家庭作业系统加强学生对微积分的准备
  • 批准号:
    0087954
  • 财政年份:
    2001
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了