Adaptation and Percolation in Complex Networks

复杂网络中的适应和渗透

基本信息

  • 批准号:
    0908221
  • 负责人:
  • 金额:
    $ 24.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Many important dynamical processes take place on networks. Examples include epidemic propagation, genetic regulation, synchronization, information propagation, and many more. Often, these dynamical processes have a modifying effect on the network structure. This project will study the bidirectional interaction of network structure and network processes. As an important and representative case, the synchronization of network-coupled dynamical systems will be studied when network links and oscillator parameters adapt in response to node dynamics. Network and parameter adaptation will be investigated numerically and analytically by developing averaged equations that describe the evolution of the network and oscillator parameters. Possible network fixed points, bifurcations, and attractors in low-dimensional subsets of the space of networks will be studied as a function of various network measures and adaption rules. In a related project, percolation in non-Markovian networks will be studied. The effect of network structure on the percolation threshold has been studied for Markovian networks and for locally tree-like networks. The validity of the Markovian assumption will be tested for various networks arising in applications. Additionally, a way to determine the percolation threshold in non-Markovian networks that are not tree-like will be sought.Network percolation is related to models of epidemic propagation, the propagation of information in a network, or the robustness of networks under attack or random failures. For example, in the epidemic context, the percolation threshold separates networks in which a disease will die out from those in which it will propagate to infect a significant fraction of the population. Our theoretical understanding of how network structure (for example, how people interact with each other during an epidemic) determines this transition is restricted to networks satisfying specific conditions. One of the goals of this project is to directly test whether or not networks found in practice, such as social networks, satisfy them. In addition, existing theoretical tools will be extended to networks that do not satisfy these conditions. Many processes that can be described in terms of networks, such as communication networks of unmanned aerial vehicles, food-chain networks, and neuron networks, do not take place on a static network, but on a network that changes in response to node dynamics. The other part of the project seeks to increase our understanding of how networks change in response to the processes that they mediate, and how they can be described as dynamical objects.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。许多重要的动力学过程都发生在网络上。例子包括流行病传播、遗传调节、同步、信息传播等等。通常,这些动态过程对网络结构具有修改作用。本计画将研究网路结构与网路过程的双向互动。作为一个重要的和有代表性的情况下,网络耦合动力系统的同步将被研究时,网络的链接和振荡器的参数自适应响应节点的动态。网络和参数自适应将通过开发描述网络和振荡器参数演变的平均方程进行数值和分析研究。可能的网络不动点,分叉,吸引子在网络空间的低维子集将被研究作为各种网络措施和适应规则的函数。在一个相关的项目中,将研究非马尔可夫网络中的渗流。研究了马尔可夫网络和局部树状网络的网络结构对逾渗阈值的影响。马尔可夫假设的有效性将被测试的各种网络中出现的应用。此外,一种方法来确定在非马尔可夫网络的渗流阈值是不是tree-like将search.Network逾渗有关的流行病传播模型,在网络中的信息传播,或攻击或随机故障下的网络的鲁棒性。例如,在流行病的背景下,渗流阈值将疾病将消亡的网络与疾病将传播感染相当一部分人口的网络分开。我们对网络结构的理论理解(例如,人们在流行病期间如何相互作用)决定了这种转变仅限于满足特定条件的网络。这个项目的目标之一是直接测试在实践中发现的网络,如社交网络,是否满足他们。此外,现有的理论工具将扩展到不满足这些条件的网络。许多可以用网络来描述的过程,如无人机的通信网络、食物链网络和神经元网络,并不是发生在静态网络上,而是发生在响应节点动态而变化的网络上。该项目的另一部分旨在增加我们对网络如何响应它们所介导的过程而变化的理解,以及如何将它们描述为动态对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Restrepo其他文献

emSF3B1/em Mutation Significance in Myeloid Neoplasms without Anemia
无贫血骨髓增殖性肿瘤中 emSF3B1/em 突变的意义
  • DOI:
    10.1182/blood-2024-206109
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
    23.100
  • 作者:
    Sergi Camarillas;Esther Alonso;Xavier Calvo;Leonor Arenillas;Alba Mesa;Lurdes Zamora;María Eugenia Rivero;Evelin Casanova;Juan Restrepo;Nuria Brey;María Rozman;Sofia Muzio;Irene Medina;Laura Gallur;María Gabarrós-Subirà;Adoracion Blanco;Margarita Ortega-Blanco;Gloria Hidalgo-Gomez;Julia Montoro;Andres Jerez;Silvia Saumell
  • 通讯作者:
    Silvia Saumell
<em>SF3B1</em> Mutation Significance in Myeloid Neoplasms without Anemia
  • DOI:
    10.1182/blood-2024-206109
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Sergi Camarillas;Esther Alonso;Xavier Calvo;Leonor Arenillas;Alba Mesa;Lurdes Zamora;María Eugenia Rivero;Evelin Casanova;Juan Restrepo;Nuria Brey;María Rozman;Sofia Muzio;Irene Medina;Laura Gallur;María Gabarrós-Subirà;Adoracion Blanco;Margarita Ortega-Blanco;Gloria Hidalgo-Gomez;Julia Montoro;Andres Jerez
  • 通讯作者:
    Andres Jerez
Crafting On-Skin Interfaces: An Embodied Prototyping Journey
制作皮肤界面:具体的原型制作之旅
Assessment of the IPSS-M in Chronic Myelomonocytic Leukemia
  • DOI:
    10.1182/blood-2024-204557
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Palomo;Mireia Morgades;Manja Meggendorfer;Marina Díaz-Beyá;Helena Pomares;Guillermo Ramil López;Mariam Ibañez;Mar Tormo;Felix Lopez;Alejandro Avendaño Pita;Juan Carlos Caballero;Jordi Vila Bou;Juan Restrepo;Veronica Roldan;Pilar Galán;Estefania Cerezo Velasco;Cristina Notario;ANA Garcia Feria;Torsten Haferlach;Sandra Castaño-Díez
  • 通讯作者:
    Sandra Castaño-Díez

Juan Restrepo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Restrepo', 18)}}的其他基金

Conference: Computational Approaches for Contagion on Complex Social Systems
会议:复杂社会系统传染的计算方法
  • 批准号:
    2224051
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Synchronization in Networks with Higher Order Interactions
具有高阶交互的网络同步
  • 批准号:
    2205967
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
HNDS-I: Using Hypergraphs to Study Spreading Processes in Complex Social Networks
HNDS-I:使用超图研究复杂社交网络中的传播过程
  • 批准号:
    2121905
  • 财政年份:
    2021
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Conference: Dynamics Days 2018
会议:2018 年动力学日
  • 批准号:
    1744035
  • 财政年份:
    2017
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
  • 批准号:
    1524241
  • 财政年份:
    2014
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
  • 批准号:
    1434198
  • 财政年份:
    2014
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Conference: Dynamics Days 2013
会议:2013 年动力学日
  • 批准号:
    1243211
  • 财政年份:
    2012
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Wave Breaking Dissipation Modeling and Parametrization in Wave/Current Interactions
CMG 合作研究:波浪/水流相互作用中的破波耗散建模和参数化
  • 批准号:
    0723765
  • 财政年份:
    2007
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Mathematical Theory and Modeling of Wave-Current Interaction
合作研究:CMG:波流相互作用的数学理论和建模
  • 批准号:
    0327617
  • 财政年份:
    2003
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Continuing Grant

相似海外基金

Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
  • 批准号:
    23K23403
  • 财政年份:
    2024
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
  • 批准号:
    23KJ1244
  • 财政年份:
    2023
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Percolation Theory and Related Topics
渗滤理论及相关主题
  • 批准号:
    2246494
  • 财政年份:
    2023
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Continuing Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Discovery Grants Program - Individual
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
  • 批准号:
    22H02135
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bootstrap Percolation and Related Processes
Bootstrap 渗透及相关过程
  • 批准号:
    572362-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Random graphs and percolation processes
随机图和渗透过程
  • 批准号:
    RGPIN-2016-05949
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of Percolation Theory and Multiphysics' Concept to Develop Dynamic Modeling and Accurate Upscaling Approaches for Two-Phase Flow during Immiscible Displacement of Heavy Oil in Porous Media
利用渗流理论和多物理场概念开发多孔介质中稠油非混相驱替过程中两相流的动态建模和精确放大方法
  • 批准号:
    RGPIN-2017-06877
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Discovery Grants Program - Individual
Accessibility percolation
无障碍渗透
  • 批准号:
    2751521
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    Studentship
Percolation on hierarchical lattices: cluster sizes and critical exponents
分层格子上的渗透:簇大小和临界指数
  • 批准号:
    573692-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24.81万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了