Analytical and computational methods for femtosecond lasers
飞秒激光器的分析和计算方法
基本信息
- 批准号:0908399
- 负责人:
- 金额:$ 25.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most important recent advances in nonlinear optics has been the development of a new generation of very stable short-pulse lasers, with typical pulse durations of just a few femtoseconds. Such lasers have numerous applications. Among others, they provide precise sources for spectroscopy and frequency metrology, and are an essential component in optical atomic clocks. Because of the many physical effects present and the vastly different timescales involved, however, making quantitative predictions about the behavior of these systems and their fundamental performance limits is a challenging task. This project will address these challenges by developing new mathematical models aimed at describing these lasers' behavior and an accompanying set of analytical and computational tools. The new models, which will explicitly take into account the inherent complexity of these systems and the multiple time scales present, will then be used to analyze the mode-locking and nonlinear dynamics of pulses in the laser cavity. Moreover, these new models will guide the development of statistical computational algorithms that can accurately quantify the impact of noise and calculate the probability of the rare events that limit the accuracy and ultimate reliability of these systems.Femtosecond lasers have a wide range of applicability. Beyond metrology and atomic clocks, already mentioned, important applications are a new generation of global positioning systems, the probing of transients occurring during chemical reactions and the ablation of tumors. Thus, this project will impact not only the scientific community, but also society at large. The new mathematical models and computational methods that will be derived as part of this project will substantially advance the theory of femtosecond lasers, and they will make it possible to accurately and efficiently predict the performance of these lasers. As a result, they will provide useful tools for the scientists and engineers who design and build these systems. An important part of the project will also be the training of students and junior researchers: through this interdisciplinary effort, students will be trained to use concepts, methods and techniques outside their main discipline, thus greatly enriching their educational and professional experience.
非线性光学领域最近最重要的进展之一是新一代非常稳定的短脉冲激光器的开发,其典型脉冲持续时间仅为几飞秒。这种激光器有许多应用。其中,它们为光谱学和频率计量提供了精确的来源,并且是光学原子钟的重要组成部分。然而,由于存在许多物理效应,并且涉及的时间尺度差异很大,因此对这些系统的行为及其基本性能限制进行定量预测是一项具有挑战性的任务。该项目将通过开发旨在描述这些激光器行为的新数学模型以及配套的分析和计算工具来解决这些挑战。新模型将明确考虑到这些系统的固有复杂性和存在的多时间尺度,然后将用于分析激光腔中脉冲的锁模和非线性动力学。此外,这些新模型将指导统计计算算法的发展,这些算法可以准确地量化噪声的影响,并计算限制这些系统的准确性和最终可靠性的罕见事件的概率。飞秒激光器具有广泛的适用性。除了已经提到的计量和原子钟之外,重要的应用是新一代的全球定位系统,探测化学反应过程中发生的瞬变和肿瘤消融。因此,这个项目不仅会影响科学界,还会影响整个社会。作为这个项目的一部分,新的数学模型和计算方法将大大推进飞秒激光器的理论,它们将使准确有效地预测这些激光器的性能成为可能。因此,它们将为设计和建造这些系统的科学家和工程师提供有用的工具。该项目的一个重要部分还将是对学生和初级研究人员的培训:通过这种跨学科的努力,学生将被训练使用其主要学科以外的概念、方法和技术,从而大大丰富他们的教育和专业经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gino Biondini其他文献
Gino Biondini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gino Biondini', 18)}}的其他基金
Nonlinear evolution equations, asymptotics and applications
非线性演化方程、渐进及其应用
- 批准号:
2009487 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
Collaborative research: Integrable systems, inverse scattering and applications
合作研究:可积系统、逆散射及其应用
- 批准号:
1614623 - 财政年份:2016
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
OP: Collaborative research: Nonlinear theory of slow light
OP:合作研究:慢光的非线性理论
- 批准号:
1615524 - 财政年份:2016
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
Collaborative research: Nonlinear wave equations and inverse scattering
合作研究:非线性波动方程和逆散射
- 批准号:
1311847 - 财政年份:2013
- 资助金额:
$ 25.13万 - 项目类别:
Continuing Grant
Collaborative research: mathematical and computational methods for high-performance lightwave systems
合作研究:高性能光波系统的数学和计算方法
- 批准号:
0506101 - 财政年份:2005
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Analytical Methods for Investigating the Epidemiology of Antimicrobial Resistance using Campylobacter coli from Swine Populations as a Model System
使用猪群中的弯曲杆菌作为模型系统,改进研究抗菌素耐药性流行病学的分析方法
- 批准号:
10453455 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Advancing Analytical Methods for Investigating the Epidemiology of Antimicrobial Resistance using Campylobacter coli from Swine Populations as a Model System
使用猪群中的弯曲杆菌作为模型系统,改进研究抗菌素耐药性流行病学的分析方法
- 批准号:
10197038 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Advancing Analytical Methods for Investigating the Epidemiology of Antimicrobial Resistance using Campylobacter coli from Swine Populations as a Model System
使用猪群中的弯曲杆菌作为模型系统,改进研究抗菌素耐药性流行病学的分析方法
- 批准号:
10670763 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood
增强型 MDx:优化全血分析前病原体分离的计算模型
- 批准号:
10650836 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood
增强型 MDx:优化全血分析前病原体分离的计算模型
- 批准号:
10484641 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Enhanced MDx: a computational model to optimize pre-analytical pathogen isolation from whole blood.
增强型 MDx:一种优化全血分析前病原体分离的计算模型。
- 批准号:
9909760 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别: