A Novel Probabilistic-Based Approach to the Simulation of Disperse Two-Phase Flows with Application to Atmospheric Science

一种基于概率的新型分散两相流模拟方法及其在大气科学中的应用

基本信息

项目摘要

The investigator will develop and study a new computational approach for the simulation of turbulent droplet-laden flows rooted in the probabilistic-based description of particle transport. This requires the determination of the evolution of the particle-density function in space and time, coupled with the turbulent flow of the carrier phase (gas or liquid). Knowledge of this function enables consistent coupling with the flow through mass, momentum, and energy sources in the governing equations of the carrier gas flow. The main mathematical difficulty that has prevented this approach from progressing in the past is the high dimensionality of the space of independent variables of the distribution function, which renders traditional computational techniques ineffective with current or foreseeable computational resources. The main idea of the research is the use of a new non-linear global basis function projection approach that condenses several of the extra dimensions of the problem. The transformative nature of the proposal is in (i) devising a methodology for integrating the transport equation for the distribution function that is computationally amenable, (ii) implementing the numerical methodology in an efficient predictive and modular tool, and (iii) extending the knowledge of the currently inaccessible aspects of the microphysics interaction with the carrier gas in atmospheric cloud simulations. Furthermore, collaboration with a team at Max-Planck Institute for Meteorology will ensure the effective transfer and dissemination of the technology that is proposed to the area of physical meteorology. The prediction of multi-phase flows, particularly solid or liquid particles dispersed in a host-gas, is challenging and computationally onerous. These flows arise in natural phenomena; encompassing cloud dynamics, dust storms and grassland fires; and industrial applications such as food and chemical processing as well as chemical synthesis and propulsion. The interactions between a highly turbulent flow and the extremely large number of particles (millions-to-billions and beyond) of different shape and size, moving in different directions with different velocities, that undergo phase transformation and/or chemical reactions, lead to a complex mathematical problem. The proposed research will make a significant impact in the understanding of a wide range of science and engineering phenomena involving flows with dispersed particles that are currently inaccessible. The research will enable high-fidelity computations that incorporate phenomena at the small and large scales consistently. Enhancement in the prediction of these flows has numerous scientific and societal benefits; e.g., because atmospheric flows are critical to improve weather prediction and to better understand the global energy balance of our planet.
研究人员将开发和研究一种新的计算方法,用于模拟湍流液滴负载流植根于粒子传输的概率为基础的描述。这需要确定空间和时间中的粒子密度函数的演变,再加上载体相(气体或液体)的湍流。该函数的知识使得能够在载气流的控制方程中与通过质量、动量和能量源的流一致地耦合。过去阻止这种方法取得进展的主要数学困难是分布函数的独立变量空间的高维性,这使得传统的计算技术在当前或可预见的计算资源下无效。该研究的主要思想是使用一种新的非线性全局基函数投影方法,该方法浓缩了问题的多个额外维度。该提案的变革性在于:(i)设计一种方法,用于整合传输方程的分布函数,该分布函数在计算上是可行的,(ii)在一个有效的预测和模块化工具中实施数值方法,以及(iii)扩展大气云模拟中载气与微物理相互作用的目前无法访问的方面的知识。 此外,与马克斯-普朗克气象研究所的一个小组合作,将确保有效转让和传播拟用于物理气象学领域的技术。多相流的预测,特别是分散在主气体中的固体或液体颗粒,是具有挑战性和计算繁重。这些流动出现在自然现象中;包括云动力学,沙尘暴和草原火灾;以及食品和化学加工以及化学合成和推进等工业应用。高度湍流的流动与大量不同形状和大小的颗粒(数百万到数十亿甚至更多)之间的相互作用,以不同的速度向不同的方向移动,经历相变和/或化学反应,导致复杂的数学问题。拟议的研究将对理解广泛的科学和工程现象产生重大影响,这些现象涉及目前无法获得的分散颗粒流。这项研究将使高保真度的计算,包括在小规模和大规模的现象一致。加强对这些流动的预测具有许多科学和社会效益;例如,因为大气流动对于改善天气预报和更好地了解我们星球的全球能源平衡至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Pantano-Rubino其他文献

Carlos Pantano-Rubino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Pantano-Rubino', 18)}}的其他基金

CyberTraining: Pilot: Fostering Computational Excellence (FOCEX): Addressing the Disconnect between Advanced CyberInfrastructure and Educational Preparedness
网络培训:试点:促进卓越计算 (FOCEX):解决先进网络基础设施与教育准备之间的脱节
  • 批准号:
    2320943
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
A novel application of flame hole dynamics to consistent turbulent nonpremixed combustion modeling
火焰孔动力学在一致湍流非预混燃烧建模中的新颖应用
  • 批准号:
    1236164
  • 财政年份:
    2012
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Adaptive Methods for Eulerian probability-density-transport equations in turbulent particulate dispersion
湍流颗粒分散中欧拉概率-密度-输运方程的自适应方法
  • 批准号:
    0908491
  • 财政年份:
    2009
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant

相似海外基金

Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Research Grant
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
  • 批准号:
    2887257
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Studentship
Basin flood control and enviromental management based on probabilistic information using innovative technology
利用创新技术基于概率信息的流域防洪和环境管理
  • 批准号:
    23K04044
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
  • 批准号:
    2238375
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
CAREER: Model-based compression and probabilistic analysis of non-Markovian sequences
职业:非马尔可夫序列的基于模型的压缩和概率分析
  • 批准号:
    2144974
  • 财政年份:
    2022
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
Optimal Scheduling of Grid and Energy Storage System Based on Probabilistic Path Optimization
基于概率路径优化的电网与储能系统优化调度
  • 批准号:
    22K04053
  • 财政年份:
    2022
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Treatment optimization based on probabilistic visual mapping of subthalamic nucleus deep brain stimulation therapy effects.
基于丘脑底核深部脑刺激治疗效果的概率视觉映射的治疗优化。
  • 批准号:
    22K15714
  • 财政年份:
    2022
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2140057
  • 财政年份:
    2022
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Development of probabilistic risk assessment method for aquatic environmental disasters based on large ensemble climate forecast data
基于大集合气候预报数据的水生环境灾害概率风险评估方法开发
  • 批准号:
    21K04276
  • 财政年份:
    2021
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了