Geometric mechanics of charged ribbons
带电带的几何力学
基本信息
- 批准号:0908755
- 负责人:
- 金额:$ 24.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PutkaradzeDMS-0908755 The investigator develops equations of motion for elasticstrings with rigid "bouquets" of charges that may swivel aroundthe elastic base. In addition to elastic energy of the bend,arbitrary nonlocal interactions between the charges areconsidered. The studies are kept completely general and caninclude electrostatic interactions, the Lennard-Jonesinteractions preventing self-intersection of the string, or anyother nonlocal interactions. The investigator and his colleaguesderive an exact geometric theory of the motion of the nonlocallyinteracting elastic strings and apply it to a variety ofproblems. This theory is based on the Simo-Marsden-Krishnaprasadtheory of exact elastic rods. After the theory is derived, anexplicit method for computing exact helical solutions of theequations is found. The investigator also shows that forgeometric reasons, an explicit dispersion relation for thepropagation and stability of linear waves on helical solutionscan be derived. This technique also provides a method forcomputing linear combinations of elastic constants if the shapeof helical molecules and the interactions between the charges areknown. The investigator also derives a discrete analogue of theequations allowing a wide class of exact solutions, calledn-helices. These are discrete helices with the pattern repeatingafter n shifts. The bifurcation structure of these discreten-helices is examined. Finally, it is shown how to use helicesas basic building blocks for construction of more complexmolecular conformations. Long chains of organic molecules, like proteins, form thebasis of all life on Earth. The shape of these molecules plays acrucial role for their function in a living body, and thusunderstanding of the inner structure of these molecules is animportant task. It has been found that the inner structure ofmany proteins consists of tightly wound helices, and thosehelices are packed together in a complex fashion. The helicesare held together by a complex interplay of electrostatic andelastic (and other) forces. How can one describe the formationof these complex shapes? Why are helices so ubiquitous inNature? The investigator and his colleagues approach thesequestions by deriving a theory of molecular chain evolution thatcan include many possible interactions between individual atoms. The investigator shows that, because of geometric reasons,helices are stationary states for simple molecules, no matter howcomplex the interaction between the atoms may be. This theoryforms a basis for understanding of the inner structure ofbiological molecules and their dynamics. Better understanding ofthe spatial structure of molecules and their formation helps indesigning better polymers for the chemical industry, better drugsfor medical applications, and materials with novel and improvedproperties for high-tech engineering of the future.
PutkaradzeDMS-0908755 研究者建立了弹性弦的运动方程,弦上有刚性的“束”装药,这些装药可以绕着弹性基座旋转。 除了考虑弯曲的弹性能外,还考虑了电荷间的任意非局域相互作用。 这些研究是完全一般性的,可以包括静电相互作用,防止弦自相交的Lennard-Jones相互作用,或任何其他非局部相互作用。 研究者和他的同事推导出了非局部相互作用弹性弦运动的精确几何理论,并将其应用于各种问题。 这个理论是基于精确弹性杆的Simo-Marsden-Krishnaprasad理论。 在理论推导之后,找到了计算方程精确螺旋解的显式方法,并指出由于几何原因,可以导出螺旋解上线性波传播和稳定性的显式色散关系。 这种方法还提供了一种方法,用于计算线性组合的弹性常数,如果螺旋分子的形状和电荷之间的相互作用是已知的。 调查员还推导出一个离散的模拟theequations允许广泛的一类精确的解决方案,calledn-螺旋。 这些是离散的螺旋,在n次移位后图案重复。 研究了这些离散螺旋的分叉结构。 最后,它显示了如何使用helicesas的基本积木的建设更复杂的分子构象。 有机分子的长链,如蛋白质,构成了地球上所有生命的基础。 这些分子的形状对它们在生物体内的功能起着决定性的作用,因此了解这些分子的内部结构是一项重要的任务。 已经发现,许多蛋白质的内部结构由紧密缠绕的螺旋组成,并且这些螺旋以复杂的方式堆积在一起。 螺旋是由静电力和弹性力(以及其他)的复杂相互作用而结合在一起的。 如何描述这些复杂形状的形成? 为什么螺旋在自然界如此普遍? 研究者和他的同事们通过推导分子链演化理论来接近这些方程,该理论可以包括单个原子之间许多可能的相互作用。研究者指出,由于几何原因,螺旋是简单分子的稳定态,不管原子之间的相互作用多么复杂。 这一理论构成了理解生物分子内部结构及其动力学的基础。 更好地了解分子的空间结构及其形成有助于为化学工业设计更好的聚合物、为医疗应用设计更好的药物以及为未来高科技工程设计具有新颖和改进性能的材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Mueller其他文献
International norm echoing in rebel groups: The cases of the Kosovo Liberation Army and the Liberation Tigers of Tamil Eelam
国际规范在叛乱组织中得到体现:科索沃解放军和泰米尔伊拉姆猛虎解放组织的案例
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jennifer Mueller - 通讯作者:
Jennifer Mueller
When less may be more: Sentinel lymph node biopsy compared with systematic lymphadenectomy in early-stage cervical cancer (1194)
当少即是多时:早期宫颈癌前哨淋巴结活检与系统性淋巴结清扫术的比较(1194)
- DOI:
10.1016/j.ygyno.2023.06.110 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Kathryn Miller;Kieran Seay;Chrissy Liu;Juliana Schilsky;Vance Broach;Jennifer Mueller;Sarah Kim;Yukio Sonoda;Kay Park;Kaled Alektiar;Nadeem Abu-Rustum;Mario Leitao - 通讯作者:
Mario Leitao
Germline drivers of gynecologic carcinosarcoma (2274)
妇科癌肉瘤的种系驱动因素(2274)
- DOI:
10.1016/j.ygyno.2023.06.392 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Tiffany Sia;Ozge Birsoy;Yelena Kemel;Anna Maio;Erin Salo-Mullen;Margaret Sheehan;Martee Hensley;Maria Rubinstein;Vicky Makker;Rachel Grisham;Roisin O'Cearbhaill;Kara Long Roche;Jennifer Mueller;Yukio Sonoda;Dennis Chi;Nadeem Abu-Rustum;Michael Berger;Lora Ellenson;Zsofia Stadler;Kenneth Offit;Ying Liu - 通讯作者:
Ying Liu
Technology-facilitated gender-based violence: What is it, and how do we measure it?
技术促成的性别暴力:它是什么,我们如何衡量它?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
L. Hinson;Jennifer Mueller;Lila O’Brien;N. Wandera - 通讯作者:
N. Wandera
The Auditor's Approach to Subsequent Events: Insights from the Academic Literature
审计师处理后续事件的方法:来自学术文献的见解
- DOI:
10.2308/ajpt-50328 - 发表时间:
2013 - 期刊:
- 影响因子:2.8
- 作者:
Janne O. Y. Chung;C. Cullinan;Michele L. Frank;James H. Long;Jennifer Mueller;Dennis M. O'reilly - 通讯作者:
Dennis M. O'reilly
Jennifer Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Mueller', 18)}}的其他基金
Graduate Student Workshop in Inverse Problems and Applications
反问题及应用研究生研讨会
- 批准号:
0711489 - 财政年份:2007
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
The D-bar Method in Electrical Impedance Tomography
电阻抗断层扫描中的 D-bar 方法
- 批准号:
0513509 - 财政年份:2005
- 资助金额:
$ 24.42万 - 项目类别:
Continuing Grant
The First Mummy Range Workshop in Electrical Impedance Tomography
第一届木乃伊范围电阻抗断层扫描研讨会
- 批准号:
0138498 - 财政年份:2002
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
A Direct Reconstruction Algorithm for the 2-D Inverse Conductivity Problem
二维电导率反问题的直接重构算法
- 批准号:
0104861 - 财政年份:2001
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9706002 - 财政年份:1997
- 资助金额:
$ 24.42万 - 项目类别:
Fellowship Award
相似国自然基金
疲劳荷载作用下沥青路面粘结层力学响应特性及破坏机理研究
- 批准号:51308060
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
分级超级碳纳米管及分级轻质结构的性能研究
- 批准号:10972111
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Continuing Grant
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 24.42万 - 项目类别:
Research Grant














{{item.name}}会员




