CNH: Fine-Scale Dynamics of Human Adaptation in Coupled Natural and Social Systems: An Integrated Computational Approach Applied to Three Fisheries
CNH:耦合自然和社会系统中人类适应的精细尺度动力学:应用于三种渔业的综合计算方法
基本信息
- 批准号:0909449
- 负责人:
- 金额:$ 102.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to gain a better understanding of the way competition between individual fishermen lead to the emergence of private incentives and informal social arrangements that are (or are not) consistent with conservation of the resource. These informal arrangements and incentives are important because they help us understand the extent to which private interests might strengthen or weaken on-going resource management and, consequently, the sustainability of coupled human and natural systems. The broad hypothesis driving the study is that the informal social structure that emerges from competitive interactions among fishermen reflects the particular circumstances of the natural system. In some cases, successful competition requires secretive non-cooperative behavior; in others, cooperation tends to yield better competitive results. These different outcomes have different, and not always obvious, impacts on the feasibility and effectiveness of resource management. We think of the relevant human social process as one in which individuals compete with one another through time-consuming and costly acquisition of valuable knowledge about a complex resource. To compete successfully, individuals must balance the immediate benefits that come from exploiting knowledge they currently hold with the costly need to explore for new knowledge; additionally, when seeking new knowledge, individuals must balance the costs and benefits of acquiring knowledge through cooperation or through autonomous search. In order to model this kind of competitive process, we employ a significantly modified version of a technique borrowed from computer science called a learning classifier system (LCS). LCS uses a genetic algorithm to mimic the way an agent (here a fisherman) uses his experience to continuously refine his knowledge and decisions about his natural and social environment. The importance of LCS is that it permits simulation of the co-evolving strategic interactions of self-interested fishermen who are only partially informed about the state of the resource they are exploiting and the fishermen with whom they compete. The problem of understanding these kinds of competitive dynamics is evident in almost all coupled natural and human systems. We apply the approach to a comparative study of three Gulf of Maine fisheries which are characterized by significantly different temporal and spatial dynamics - sea urchins, lobster and cod. Each fishery will be modeled using a biophysical simulator of the natural system and a tightly integrated multi-agent learning classifier system that simulates the learning and interactions of fishermen. The design of each model will be based in part on extensive interviews with fishermen about their knowledge of the dynamics of the fisheries in which they work. We will use these models to explore past and prospective policy problems in each fishery. Beyond the immediate applicability of these explorations, we expect this project will provide a foundation for the wider use of multi-agent learning models in other coupled systems. Project outcomes will be transmitted regularly to industry and managers. Principal investigators include economists, biologists, anthropologists and computer scientists. All the PIs have years of experience in the fisheries of the Gulf of Maine and have well developed relationships with individual fishermen and managers. A masters level student in marine policy, a Ph.D. student in computer or marine science and a post-doctoral researcher in computer science will be employed on the project. In addition, the project will develop an undergraduate course in complex adaptive social-ecological systems and a graduate student/faculty workshop in the same area.
该项目的目的是更好地了解个体渔民之间的竞争如何导致与资源保护相一致(或不一致)的私人激励措施和非正式社会安排的出现。这些非正式的安排和激励措施很重要,因为它们帮助我们了解私人利益可能在多大程度上加强或削弱正在进行的资源管理,从而了解人类和自然系统耦合的可持续性。推动这项研究的广泛假设是,渔民之间的竞争性互动产生的非正式社会结构反映了自然系统的特殊环境。在某些情况下,成功的竞争需要秘密的不合作行为;在另一些情况下,合作往往会产生更好的竞争结果。这些不同的结果对资源管理的可行性和有效性有不同的但并不总是明显的影响。我们认为相关的人类社会过程是个体通过耗时且昂贵的获取有关复杂资源的宝贵知识而相互竞争的过程。为了在竞争中取得成功,个人必须在利用现有知识所带来的直接利益与探索新知识的昂贵需求之间取得平衡;此外,在寻求新知识时,个人必须平衡通过合作或自主搜索获取知识的成本和收益。为了模拟这种竞争过程,我们采用了一种从计算机科学中借用的技术的显着修改版本,称为学习分类器系统(LCS)。 LCS 使用遗传算法来模仿代理(此处为渔民)利用其经验不断完善其关于自然和社会环境的知识和决策的方式。 LCS 的重要性在于,它可以模拟自利渔民之间共同演化的战略互动,这些渔民仅部分了解他们正在开发的资源状况以及与他们竞争的渔民。理解这些竞争动态的问题在几乎所有耦合的自然和人类系统中都是显而易见的。我们将该方法应用于缅因湾三种渔业的比较研究,这三种渔业的特点是时空动态显着不同——海胆、龙虾和鳕鱼。 每个渔业都将使用自然系统的生物物理模拟器和紧密集成的多智能体学习分类器系统来模拟渔民的学习和交互。每个模型的设计将部分基于对渔民的广泛访谈,了解他们对其工作的渔业动态的了解。我们将使用这些模型来探讨每个渔业过去和未来的政策问题。除了这些探索的直接适用性之外,我们预计该项目将为在其他耦合系统中更广泛地使用多智能体学习模型奠定基础。项目成果将定期传达给行业和管理者。主要研究人员包括经济学家、生物学家、人类学家和计算机科学家。所有 PI 均在缅因湾渔业领域拥有多年经验,并与个体渔民和管理人员建立了良好的关系。海洋政策硕士生,博士生。该项目将雇用计算机或海洋科学专业的学生和计算机科学专业的博士后研究员。此外,该项目还将开发复杂适应性社会生态系统的本科课程以及同一领域的研究生/教师研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Wilson其他文献
Public Value, Maximization and Health Policy: An Examination of Hausman’s Restricted Consequentialism
公共价值、最大化和卫生政策:豪斯曼有限后果主义的检验
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
James Wilson - 通讯作者:
James Wilson
Recent Updates in Nutrition After Spinal Cord Injury: 2015 Through 2021
脊髓损伤后营养的最新更新:2015 年至 2021 年
- DOI:
10.1007/s40141-022-00367-2 - 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
James Wilson;Amber Brochetti;Suzanna Shermon;Elizabeth Twist - 通讯作者:
Elizabeth Twist
Therapeutic Community Treatment for Personality Disordered Adults: Changes in Neurotic Symptomatology on Follow-Up
人格障碍成人的社区治疗:随访中神经症症状的变化
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:7.5
- 作者:
B. Dolan;C. Evans;James Wilson - 通讯作者:
James Wilson
The use of magnetically-controlled growing rods to treat children with early-onset scoliosis: early radiological results in 19 children.
使用磁控生长棒治疗早发性脊柱侧弯儿童:19 名儿童的早期放射学结果。
- DOI:
10.1302/0301-620x.98b9.37545 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
W. Thompson;C. Thakar;D. Rolton;James Wilson;Colin Nnadi - 通讯作者:
Colin Nnadi
Avoiding unrealistic behaviour in coupled reactive-transport simulations of cation exchange and mineral kinetics in clays
避免粘土中阳离子交换和矿物动力学的耦合反应输运模拟中的不切实际行为
- DOI:
10.1180/clm.2019.7 - 发表时间:
2019 - 期刊:
- 影响因子:1.5
- 作者:
S. Benbow;James Wilson;R. Metcalfe;Jarmo Lehikoinen - 通讯作者:
Jarmo Lehikoinen
James Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Wilson', 18)}}的其他基金
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
The Annual Data Institute Conference
年度数据研究所会议
- 批准号:
1841307 - 财政年份:2019
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Research: New Algorithms for Group Isomorphism
协作研究:群同构的新算法
- 批准号:
1620454 - 财政年份:2016
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Funding for a conference on Groups, Computation, and Geometry, June 9-13, 2014
为 2014 年 6 月 9 日至 13 日举行的群、计算和几何会议提供资助
- 批准号:
1406494 - 财政年份:2014
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Research: Effective Sequential Procedures for Risk and Error Estimation in Steady-state Simulation
协作研究:稳态仿真中风险和误差估计的有效顺序程序
- 批准号:
1232998 - 财政年份:2012
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
RAPID: A Retrospective Oral History of Computer Simulation
RAPID:计算机模拟的回顾性口述历史
- 批准号:
1150107 - 财政年份:2011
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Collaborative Doctoral 2010 Grant - Liberty and Public Protection in Infectious Disease Policy
2010 年合作博士补助金 - 传染病政策中的自由和公共保护
- 批准号:
AH/I505695/1 - 财政年份:2010
- 资助金额:
$ 102.13万 - 项目类别:
Training Grant
International Planning Visit: Linking Physiology and Dispersal to Population Cycles in Norwegian Lemmings; a New Look at the Charnov-Finerty Hypothesis
国际规划访问:将挪威旅鼠的生理学和传播与种群周期联系起来;
- 批准号:
0757022 - 财政年份:2008
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Fabrication, Operation and Data Analysis of the University of Denver Low Turbulence Inlets on the NCAR C-130 for ACE-Asia
丹佛大学 NCAR C-130 ACE-Asia 低湍流入口的制造、操作和数据分析
- 批准号:
0098122 - 财政年份:2001
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 102.13万 - 项目类别:
Fellowship
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
MCA: Physiology-based mechanistic models of vector fitness to forecast species responses to coarse- and fine scale anthropogenic environmental change
MCA:基于生理学的矢量适应性机制模型,用于预测物种对粗尺度和细尺度人为环境变化的反应
- 批准号:
2322213 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
- 批准号:
2225337 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
MRI: Acquisition of a Lab-Scale Instrument for X-ray Absorption Fine Structure
MRI:购买用于 X 射线吸收精细结构的实验室规模仪器
- 批准号:
2215769 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
MCA: Combining Drone Imagery and Deep Learning to Map Fine-Scale Heterogeneity in Arctic Vegetation
MCA:结合无人机图像和深度学习来绘制北极植被的精细尺度异质性地图
- 批准号:
2321530 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Standard Grant
Developmental Mechanisms of Fine-scale Cortico-cortical Circuit Formation
精细皮质-皮质回路形成的发育机制
- 批准号:
10744933 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Fine-scale eye-movement differences in psychosis and their contribution to abnormal vision
精神病中的精细眼动差异及其对视力异常的影响
- 批准号:
10645812 - 财政年份:2023
- 资助金额:
$ 102.13万 - 项目类别:
Remote sensing techniques to infer fine-scale ocean surface currents
推断精细海洋表面洋流的遥感技术
- 批准号:
LP210200613 - 财政年份:2022
- 资助金额:
$ 102.13万 - 项目类别:
Linkage Projects
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
- 批准号:
NE/W003015/1 - 财政年份:2022
- 资助金额:
$ 102.13万 - 项目类别:
Research Grant