Singularity Studies in the Ricci Flow and Kaehler-Ricci Flow
里奇流和凯勒-里奇流中的奇异性研究
基本信息
- 批准号:0909581
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Ricci flow, and the field of geometric flows in general, has seen tremendous progress and yielded important applications to geometry, topology, and nonlinear analysis. The fundamental works of R. Hamilton and recent breakthrough by Perelman on the Ricci flow have led to the spectacular applications to geometrization of 3-manifolds, including the Hamilton-Perelman proof of the Poincaré conjecture.In this project, the PI will investigate several important problems related to the formation of singularities in the Ricci flow and the Kahler-Ricci flow which are of great interest in geometry, complex analysis, and nonlinear partial differential equations. They include studying the geometry, such as volume growths and curvature decay rates, and the classification of complete noncompact gradient shrinking Ricci solitons; the geometry of steady Ricci solitons with positive curvature, in particular the uniqueness question in 3 dimensions; asymptotic behavior of solutions to the Kahler-Ricci flow on compact Kahler manifolds with positive first Chern class.Progress on these issues would lead to profound new understandings in geometry and nonlinear analysis.The Ricci flow is an important type of geometric flows, which have profound importance and applications in science and geometry.Examples of applications of other include the motion of a surface by its mean curvature, the flow of gas in a porous mechanism, the motion of a liquid crystal, the diffusion of oil in shale, the reproduction of sparse species, and image sharpening.
Ricci流,以及整个几何流领域,已经取得了巨大的进展,并在几何、拓扑和非线性分析中产生了重要的应用。R·哈密尔顿的基础工作和最近Perelman关于Ricci流的突破导致了三维流形几何化的壮观应用,包括Poincaré猜想的Hamilton-Perelman证明。在这个项目中,PI将研究与Ricci流和Kahler-Ricci流的奇点形成有关的几个重要问题,这两个问题在几何、复分析和非线性偏微分方程组中都是非常感兴趣的。它们包括研究几何,如体积增长和曲率衰减率,完全非紧梯度收缩Ricci孤子的分类,定常正曲率Ricci孤子的几何,特别是三维唯一性问题;具有正第一类的紧致Kahler流形上Kahler-Ricci流的解的渐近性.在这些问题上的进展将在几何和非线性分析方面产生深刻的新认识.Ricci流是几何流的一种重要类型,在科学和几何中具有深远的重要性和应用.其他应用的例子包括:表面的平均曲率运动,气体在多孔机制中的流动,液晶的运动,石油在页岩中的扩散,稀疏物种的繁殖和图像锐化.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huai-Dong Cao其他文献
Martin compactification of a complete surface with negative curvature
- DOI:
10.1007/s00208-016-1367-4 - 发表时间:
2016-01-28 - 期刊:
- 影响因子:1.400
- 作者:
Huai-Dong Cao;Chenxu He - 通讯作者:
Chenxu He
Correction to: $$C_0$$ -positivity and a classification of closed three-dimensional CR torsion solitons
- DOI:
10.1007/s00209-020-02477-w - 发表时间:
2020-02-25 - 期刊:
- 影响因子:1.000
- 作者:
Huai-Dong Cao;Shu-Cheng Chang;Chih-Wei Chen - 通讯作者:
Chih-Wei Chen
$$C_0$$ -positivity and a classification of closed three-dimensional CR torsion solitons
- DOI:
10.1007/s00209-020-02471-2 - 发表时间:
2020-01-28 - 期刊:
- 影响因子:1.000
- 作者:
Huai-Dong Cao;Shu-Cheng Chang;Chih-Wei Chen - 通讯作者:
Chih-Wei Chen
A pr 2 00 4 Gaussian densities and stability for some Ricci solitons
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Huai-Dong Cao - 通讯作者:
Huai-Dong Cao
A Weil–Petersson Type Metric on the Space of Fano Kähler–Ricci Solitons
- DOI:
10.1007/s12220-022-01030-x - 发表时间:
2022-09-22 - 期刊:
- 影响因子:1.500
- 作者:
Huai-Dong Cao;Xiaofeng Sun;Yingying Zhang - 通讯作者:
Yingying Zhang
Huai-Dong Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huai-Dong Cao', 18)}}的其他基金
Lehigh-Harvard Geometry and Topology Conference
里海-哈佛几何与拓扑会议
- 批准号:
1742837 - 财政年份:2017
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Lehigh-Harvard Geometry and Topology Conference
里海-哈佛几何与拓扑会议
- 批准号:
1327329 - 财政年份:2013
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
International Symposium in Geometry and Topology
国际几何与拓扑研讨会
- 批准号:
1012225 - 财政年份:2010
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Ricci Flow, Kaehler-Ricci Flow and Applications
Ricci 流、Kaehler-Ricci 流和应用
- 批准号:
0506084 - 财政年份:2005
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: FRG: Geometric Flows and Applications
合作研究:FRG:几何流和应用
- 批准号:
0354621 - 财政年份:2004
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
On the Kaehler-Ricci Flow and Related Problems
关于凯勒-里奇流及相关问题
- 批准号:
0206847 - 财政年份:2002
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Singularities of the Kahler-Ricci Flow, Einstein 4-Manifolds and Seiberg-Witten Theory
Kahler-Ricci 流的奇点、爱因斯坦 4-流形和 Seiberg-Witten 理论
- 批准号:
9803549 - 财政年份:1998
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Analysis on Kahler Manifolds
数学科学:卡勒流形的几何与分析
- 批准号:
9504925 - 财政年份:1995
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis and Kahler Geometry
数学科学:分析和卡勒几何
- 批准号:
9307297 - 财政年份:1993
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
相似海外基金
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
- 批准号:
502607 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Discovery Early Career Researcher Award
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006232/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
- 批准号:
BB/Y006151/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
- 批准号:
2349136 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
- 批准号:
2337194 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
- 批准号:
EP/X031624/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant