RI: Large: Collaborative Research: Understanding Uncertainty in Rats and Robots
RI:大型:合作研究:了解老鼠和机器人的不确定性
基本信息
- 批准号:0910710
- 负责人:
- 金额:$ 79.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humans, rats and other vertebrates, relying on their advanced nervous systems, are far superior at dealing with the uncertainties of the world than are artificial systems. Thus, a machine, whose behavior is guided by a neurobiologically inspired system, might demonstrate the flexible, autonomous behavior normally attributed to biological organisms. Biological organisms have the ability to respond quickly to an ever-changing world. Because this adaptability is so critical for survival, all vertebrates have sub-cortical structures, which comprise the neuromodulatory systems, to handle uncertainty and change in the environment. Attention, which is influenced by neuromodulation, plays a significant role in animal's ability to respond to such changes. Different neuromodulatory systems are thought to play important and distinct roles in attention. A collaborative approach, which compares rodent experiments with robots having simulated nervous systems, will examine these attentional systems. These experiments will lead to a better understanding of how animals cope with uncertainty in the environment, and will lead to the design of a robot capable of flexible and complex behavior. This work has the potential of being paradigm-shifting technology that could find its way in many practical applications.In an interdisciplinary approach, a robotic system, whose design is based on the vertebrate neuromodulatory system and its effect on attention, will be constructed and tested under similar experimental conditions to the rat, and then in a more practical application. This approach, which combines computational modeling and robotics with rodent behavioral and electrophysiological experiments, will lead to a better understanding of how areas of the brain allocate attentional resources and cause the organism to respond rapidly to essential events and objects. Two of these neuromodulatory systems, the cholinergic and noradrenergic, are thought to play important and distinct roles in attention. Expected uncertainty, the known degree of unreliability of predictive relationships in the environment, drives activity within the cholinergic system. Unexpected uncertainty, large changes in the environment that violate prior expectations, drives activity within the noradrenergic system. These systems modulate activity in brain areas to properly allocate the attention to stimuli in the environment necessary for adequate learning to occur and fluid behavior to be maintained. This knowledge will be used to construct a robust, intelligent robotic system whose capability to adapt to change, and behave effectively in a noisy, complex environment will rival that of a biological system.
人类、老鼠和其他脊椎动物依靠它们先进的神经系统,在应对世界的不确定性方面远远优于人工系统。因此,一台机器,其行为由神经生物学启发的系统引导,可能会展示出通常归因于生物有机体的灵活、自主的行为。生物有机体有能力对不断变化的世界做出快速反应。由于这种适应性对生存至关重要,所有脊椎动物都有皮质下结构,这些结构组成了神经调节系统,以应对环境中的不确定性和变化。注意力受到神经调节的影响,在动物对这种变化的反应能力中扮演着重要的角色。不同的神经调节系统被认为在注意力中扮演着重要而不同的角色。一种合作的方法,将啮齿类动物的实验与具有模拟神经系统的机器人进行比较,将检查这些注意力系统。这些实验将有助于更好地理解动物如何应对环境中的不确定性,并将导致能够灵活和复杂行为的机器人的设计。这项工作具有转变范式的潜力,可以在许多实际应用中找到方法。在一种跨学科的方法中,将构建一个机器人系统,其设计基于脊椎动物神经调制系统及其对注意力的影响,并在类似于大鼠的实验条件下进行测试,然后在更实际的应用中。这种将计算建模和机器人技术与啮齿动物行为和电生理实验相结合的方法,将有助于更好地理解大脑区域如何分配注意力资源,并使有机体对基本事件和对象做出快速反应。其中两个神经调节系统,胆碱能和去甲肾上腺素,被认为在注意力中扮演着重要而独特的角色。预期不确定性,即环境中预测关系的已知不可靠程度,驱动胆碱能系统内的活动。意想不到的不确定性,环境中违反先前预期的巨大变化,推动去甲肾上腺素系统内的活动。这些系统调节大脑区域的活动,以适当地将注意力分配到环境中的刺激上,这是进行充分学习和保持流畅行为所必需的。这些知识将被用来构建一个强大的、智能的机器人系统,其适应变化的能力,以及在嘈杂、复杂环境中的有效行为将与生物系统相媲美。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Krichmar其他文献
NEUROROBOTICS: NEUROBIOLOGICALLY INSPIRED ROBOTS
神经机器人:受神经生物学启发的机器人
- DOI:
10.1037/e584072011-012 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Krichmar - 通讯作者:
Jeffrey Krichmar
Jeffrey Krichmar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Krichmar', 18)}}的其他基金
RI: Small: Sparse Predictive Coding for Energy Efficient Visual Navigation in Dynamic Environments
RI:小型:动态环境中节能视觉导航的稀疏预测编码
- 批准号:
1813785 - 财政年份:2018
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: BCSP: Automated Parameter Tuning of Large-Scale Spiking Neural Networks
RI:媒介:协作研究:BCSP:大规模尖峰神经网络的自动参数调整
- 批准号:
1302125 - 财政年份:2013
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
EMT/BSSE: A Controller for Autonomous Systems Based on Principles of Vertebrate Neuromodulation
EMT/BSSE:基于脊椎动物神经调节原理的自主系统控制器
- 批准号:
0829752 - 财政年份:2008
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
- 批准号:
1956330 - 财政年份:2020
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
- 批准号:
1955532 - 财政年份:2020
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1704938 - 财政年份:2017
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Incorporating Biological-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1703161 - 财政年份:2017
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Large: Collaborative Research: A Robotic Network for Locating and Removing Invasive Carp from Inland Lakes
RI:大型:合作研究:用于定位和清除内陆湖泊入侵鲤鱼的机器人网络
- 批准号:
1534122 - 财政年份:2015
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: BCSP: Automated Parameter Tuning of Large-Scale Spiking Neural Networks
RI:媒介:协作研究:BCSP:大规模尖峰神经网络的自动参数调整
- 批准号:
1302256 - 财政年份:2013
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: BCSP: Automated Parameter Tuning of Large-Scale Spiking Neural Networks
RI:媒介:协作研究:BCSP:大规模尖峰神经网络的自动参数调整
- 批准号:
1302125 - 财政年份:2013
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: 'Houston We Have A Solution': Novel Speech Processing Advancements for Analysis of Large Asynchronous Multi-Channel Audio Corpora
RI:小型:协作研究:“休斯顿,我们有一个解决方案”:用于分析大型异步多通道音频语料库的新颖语音处理进步
- 批准号:
1219130 - 财政年份:2012
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Large: Collaborative Research: Reconstructive recognition: Uniting statistical scene understanding and physics-based visual reasoning
RI:大型:协作研究:重建识别:结合统计场景理解和基于物理的视觉推理
- 批准号:
1212928 - 财政年份:2012
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: 'Houston, We Have a Solution': Novel Speech Processing Advancements for Analysis of Large Asynchronous Multi-Channel Audio Corpora
RI:小型:协作研究:“休斯顿,我们有一个解决方案”:用于分析大型异步多通道音频语料库的新颖语音处理进步
- 批准号:
1218159 - 财政年份:2012
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant