III: Large: Discovering Complex Anomalous Patterns
III:大:发现复杂的异常模式
基本信息
- 批准号:0911032
- 负责人:
- 金额:$ 259.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of the most interesting and valuable discoveries that can be made from data arise not from the evaluation of single records, but from identifying a set of records that are anomalous in some interesting way. Together they may indicate for example the emergence of a disease outbreak or new patterns of criminal activity. One can view pattern discovery as an interactive process between data analysis algorithms and human users who have expertise in the domain. This research will develop an integrated framework of probabilistic methods to interact with the user in detecting, characterizing, explaining, and learning anomalous patterns over groups of records. The focus is on the many situations where the data (and the probabilistic patterns to be discovered) are not appropriate for using other existing techniques, such as graph mining or frequent sets. The proposed methods will search over arbitrary subsets of records and evaluate their correspondence to known, potentially very complex, probabilistic patterns, or their failure to match baseline data under various learned statistical models. These methods will assist the user in understanding and modeling the discovered, previously unknown anomalies to be identifiable as a known pattern when encountered in the future. Intellectual MeritThis collaborative team of researchers will develop, implement, and evaluate a general, comprehensive, and widely applicable probabilistic framework for pattern discovery. The proposed work will address these challenging and important research questions: - How can machine learning concepts such as classification and anomaly detection be generalized to consider groups of records rather than single records? - How can a detection algorithm simultaneously detect and differentiate between known and currently unknown pattern types? - How can an algorithm explain clearly to a user what pattern was found and why? - How can an algorithm learn new pattern types through feedback from a user?The ability to detect, characterize, explain, and learn patterns from groups of records in massive datasets will provide a qualitatively new approach for advancing discovery of knowledge from data. Broader ImpactAlthough the applications for these algorithms are innumerable, development and testing will be prioritized in the areas of patient care in the intensive care unit (ICU) and aircraft fleet maintenance. Through the team's existing collaborations, the algorithms will also be used during the project in other areas including food safety, scientific discovery in astronomy sky surveys, and detection of geographic hot-spots of criminal activity. Together, these applications will demonstrate the methods' value across a wide spectrum of domains and tasks. Key Words: anomalous patterns; pattern discovery; probabilistic models; incremental learning.
许多最有趣和最有价值的发现都不是来自于对单个记录的评估,而是来自于识别一组以某种有趣的方式异常的记录。它们合在一起可能表明疾病爆发或新的犯罪活动模式的出现。人们可以将模式发现视为数据分析算法和具有该领域专业知识的人类用户之间的交互过程。这项研究将开发一个综合框架的概率方法与用户在检测,表征,解释和学习异常模式的记录组进行交互。重点是在许多情况下,数据(和概率模式被发现)是不适合使用其他现有的技术,如图挖掘或频繁集。所提出的方法将搜索记录的任意子集,并评估它们与已知的、可能非常复杂的概率模式的对应关系,或者它们在各种学习的统计模型下与基线数据匹配的失败。这些方法将帮助用户理解和建模所发现的、以前未知的异常,以便在将来遇到时能够识别为已知模式。智力MeritThis协作团队的研究人员将开发,实施和评估一个通用的,全面的,广泛适用的概率框架模式发现。拟议的工作将解决这些具有挑战性和重要的研究问题:-如何可以机器学习的概念,如classi #64257;阳离子和异常检测被推广到考虑组的记录,而不是单个记录?- 检测算法如何同时检测和区分已知和当前未知的模式类型? - 算法如何向用户清楚地解释发现了什么模式以及为什么?- 算法如何通过用户的反馈学习新的模式类型?从海量数据集中的记录组中检测、表征、解释和学习模式的能力将为推进从数据中发现知识提供一种质的新方法。更广泛的影响尽管这些算法的应用不计其数,但将优先在重症监护室(ICU)的患者护理和飞机维护领域进行开发和测试。通过该团队现有的合作,该算法还将在项目期间用于其他领域,包括食品安全,天文学天空调查的科学发现以及犯罪活动地理热点的检测。总之,这些应用程序将证明方法的价值在广泛的领域和任务。关键词:异常模式;模式发现;概率模型;增量学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Artur Dubrawski其他文献
Evaluation of coded aperture radiation detectors using a Bayesian approach
- DOI:
10.1016/j.nima.2016.09.027 - 发表时间:
2016-12-11 - 期刊:
- 影响因子:
- 作者:
Kyle Miller;Peter Huggins;Simon Labov;Karl Nelson;Artur Dubrawski - 通讯作者:
Artur Dubrawski
Incorporation of machine learning and signal quality indicators can significantly suppress false respiratory alerts during in-hospital bedside monitoring
- DOI:
10.1016/j.jelectrocard.2023.03.071 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Vedant Sanil;Artur Dubrawski;Gus Welter;Kyle Miller;Joo Heung Yoon;Theodore Lagattuta;Michael R. Pinsky;Marilyn Hravnak;Gilles Clermont;Salah Al-Zaiti - 通讯作者:
Salah Al-Zaiti
INTERPRETABLE TREATMENT PRIORITIZATION RULE DEFINES DIABETIC PATIENTS THAT BENEFIT FROM PROMPT CORONARY REVASCULARIZATION
- DOI:
10.1016/s0735-1097(23)02707-9 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Chirag Nagpal;Artur Dubrawski - 通讯作者:
Artur Dubrawski
Forecasting imminent atrial fibrillation in long-term ECG recordings
- DOI:
10.1016/j.jelectrocard.2023.03.038 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sydney Rooney;Roman Kaufman;Salah Al-Zaiti;Artur Dubrawski;Gilles Clermont;J. Kyle Miller - 通讯作者:
J. Kyle Miller
Mining intensive care vitals for leading indicators of adverse health events
挖掘重症监护生命体征中不良健康事件的先行指标
- DOI:
10.3402/ehtj.v4i0.11073 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Rajas Lonkar;Artur Dubrawski;M. Fiterau;R. Garnett - 通讯作者:
R. Garnett
Artur Dubrawski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Artur Dubrawski', 18)}}的其他基金
31st Annual Conference on Machine Learning (ICML 2014)
第 31 届机器学习年会 (ICML 2014)
- 批准号:
1444285 - 财政年份:2014
- 资助金额:
$ 259.82万 - 项目类别:
Standard Grant
I-Corps: Innovative Use of Internet Classifieds in Law Enforcement Investigations
I-Corps:互联网分类在执法调查中的创新使用
- 批准号:
1414568 - 财政年份:2014
- 资助金额:
$ 259.82万 - 项目类别:
Standard Grant
III: Small: Discovering Complex Anomalous Mappings
III:小:发现复杂的异常映射
- 批准号:
1320347 - 财政年份:2013
- 资助金额:
$ 259.82万 - 项目类别:
Continuing Grant
ARI-MA: Machine Learning for Effective Nuclear Search and Broad-Area Monitoring
ARI-MA:用于有效核搜索和广域监控的机器学习
- 批准号:
0938925 - 财政年份:2009
- 资助金额:
$ 259.82万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Discovering brain state dependent dynamics in large scale perceptual ensembles.
在大规模感知集合中发现大脑状态依赖的动力学。
- 批准号:
10568047 - 财政年份:2023
- 资助金额:
$ 259.82万 - 项目类别:
Discovering rare, extreme behaviour in large-scale computational models
发现大规模计算模型中罕见的极端行为
- 批准号:
MR/T041862/1 - 财政年份:2021
- 资助金额:
$ 259.82万 - 项目类别:
Fellowship
CIF: Medium: Discovering Changes in Networks: Fundamental Limits, Efficient Algorithms, and Large-Scale Neuroscience
CIF:中:发现网络的变化:基本限制、高效算法和大规模神经科学
- 批准号:
1955981 - 财政年份:2020
- 资助金额:
$ 259.82万 - 项目类别:
Continuing Grant
Discovering new physics with the Large Hadron Collider
使用大型强子对撞机发现新物理
- 批准号:
FT180100324 - 财政年份:2019
- 资助金额:
$ 259.82万 - 项目类别:
ARC Future Fellowships
Discovering dynamic computations from large-scale neural activity recordings
从大规模神经活动记录中发现动态计算
- 批准号:
10002240 - 财政年份:2018
- 资助金额:
$ 259.82万 - 项目类别:
Discovering dynamic computations from large-scale neural activity recordings
从大规模神经活动记录中发现动态计算
- 批准号:
9789277 - 财政年份:2018
- 资助金额:
$ 259.82万 - 项目类别:
Discovering gene regulatory networks through combination of diverse large-scale biological evidence
通过结合多种大规模生物证据发现基因调控网络
- 批准号:
402087-2011 - 财政年份:2017
- 资助金额:
$ 259.82万 - 项目类别:
Discovery Grants Program - Individual
Discovering gene regulatory networks through combination of diverse large-scale biological evidence
通过结合多种大规模生物证据发现基因调控网络
- 批准号:
402087-2011 - 财政年份:2016
- 资助金额:
$ 259.82万 - 项目类别:
Discovery Grants Program - Individual
Discovering gene regulatory networks through combination of diverse large-scale biological evidence
通过结合多种大规模生物证据发现基因调控网络
- 批准号:
402087-2011 - 财政年份:2014
- 资助金额:
$ 259.82万 - 项目类别:
Discovery Grants Program - Individual
Discovering gene regulatory networks through combination of diverse large-scale biological evidence
通过结合多种大规模生物证据发现基因调控网络
- 批准号:
402087-2011 - 财政年份:2013
- 资助金额:
$ 259.82万 - 项目类别:
Discovery Grants Program - Individual