Laboratory Earthquakes: Characterization of Ground Motion and Stress States in Complex Rupture Scenarios Using High Resolution Optical Diagnostics

实验室地震:使用高分辨率光学诊断表征复杂破裂场景中的地面运动和应力状态

基本信息

  • 批准号:
    0911723
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act 2009 (Public Law 111-5) The thrust of this research effort will focus on the advancement of a unique experimental capability for generating earthquake-like ruptures under controlled laboratory conditions. The experiment features a model specimen with an interface that simulates a natural fault in the Earth?s crust. The assembly is held together by static friction under the action of a an applied compressive load which mimics natural tectonic stresses. Seismic slip induced within the specimen results in a dynamic rupture that propagates along the fault while radiating seismic wave energy into the body of the specimen. A well instrumented laboratory earthquake setup provides a versatile testing capability for investigating complex seismological phenomena such as dynamic frictional sliding, radiated ground motion, supershear ruptures, and dynamic rupture processes associated with complex geometries. Work under the support of this grant will target the development and integration of new optical diagnostics for the precise measurement of the resulting particle (ground) motion and associated stress fields in these experiments. A full suite of optical diagnostics, such as time resolved interferometry techniques and high speed digital photography will enable high resolution measurements of stress and ground motion at an array of fixed measurement stations in addition to full field characterization of radiated wave fields. Collectively, these advanced laboratory earthquake capabilities will permit the experimental investigation of numerous long standing problems of seismological relevance. Research findings will help to bridge the gap between empirical evidence obtained from the field and computational predictions with obvious potential benefits to seismology. The interdisciplinary nature of this research necessarily involves assigning priorities to the many goals within individual disciplines. In particular, two main characteristics are reflected in the design of the new experiments. Firstly, the experimental design is intended to be as relevant as possible to the geophysical systems that they model. Secondly, the experimental configuration is kept as basic as possible so that real-time data collection and analyses can produce, unequivocal, understanding of the phenomena under scrutiny. The proposed experimental investigations will address and resolve many controversies regarding the dynamics of earthquakes. New findings from such benchmark experiments will provide data to modelers that will subsequently aid in the validation of various kinematic inversion and dynamic rupture models. The research is designed to facilitate connections in seismology and earthquake hazard mitigation. The following list provides an overview of the proposed instrumentation enhancements and outlines the broader impacts of this proposal in a number of targeted areas of seismology. Primary research objectives are: Setting up highly instrumented Laboratory Earthquake experiments especially designed to study a variety of rupture phenomena and to serve as benchmarks for the validation of analytical and numerical models of dynamic earthquake rupture. Simultaneously measuring ground motion, slip velocity, and the complete stress tensor in the local vicinity of propagating ruptures. Combining high temporal resolution, point-wise measurements, obtained at multiple stations, along with spatially resolved full-field measurements to study dynamic frictional laws in the presence of non-uniform sliding. Utilizing the highly controlled laboratory environment to clearly identify the dominant and distinguishing signatures of radiated ground motion resulting from either sub-Rayleigh or supershear ruptures and from their transitions in both speed and mode (pulse-like vs. crack-like). Investigating the unknown effect of supershear events on seismic hazards. Studying rupture propagation through complex geometries and characterize the high frequency content of the strong ground motion from such events. Introducing complex and more realistic fault geometry benchmarks and measuring final slip distribution, in addition to time-resolved multi-station recordings, in order to validate kinematic inversion codes.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的,这项研究工作的重点将集中在一个独特的实验能力的进步,在受控的实验室条件下产生类似地震的破裂。该实验的特点是一个模型标本与接口,模拟在地球上的自然断层?的外壳。该组件在模拟自然构造应力的施加的压缩载荷的作用下通过静摩擦保持在一起。在试样内引起的地震滑动导致动态破裂,该动态破裂在将地震波能量辐射到试样的主体中的同时沿着断层传播。一个良好的仪器化实验室地震设置提供了一个多功能的测试能力,调查复杂的地震现象,如动态摩擦滑动,辐射地面运动,超剪切破裂,动态破裂过程与复杂的几何形状。在这笔赠款的支持下,工作将针对新的光学诊断的开发和集成,用于精确测量这些实验中产生的粒子(地面)运动和相关的应力场。一整套光学诊断,如时间分辨干涉测量技术和高速数字摄影,将使高分辨率的测量应力和地面运动在一个阵列的固定测量站,除了全场表征辐射波场。总的来说,这些先进的实验室地震能力将允许许多长期存在的地震相关问题的实验研究。研究结果将有助于弥合从现场获得的经验证据和计算预测之间的差距,对地震学有明显的潜在好处。这项研究的跨学科性质必然涉及到在各个学科内为许多目标分配优先级。特别是,两个主要特点反映在新实验的设计。首先,实验设计的目的是尽可能相关的地球物理系统,他们的模型。第二,实验配置尽可能保持基本,以便实时数据收集和分析可以产生明确的,对正在审查的现象的理解。拟议的实验研究将解决和解决许多关于地震动力学的争议。这些基准实验的新发现将为建模人员提供数据,随后将有助于验证各种运动学反演和动态破裂模型。该研究旨在促进地震学和地震灾害减轻的联系。以下列表概述了拟议的仪器增强,并概述了该提案在地震学的一些目标领域的广泛影响。 主要研究目标是:建立高度仪器化的实验室地震实验,专门用于研究各种破裂现象,并作为验证动态地震破裂分析和数值模型的基准。在传播破裂的局部附近同时测量地面运动、滑动速度和完整的应力张量。结合高时间分辨率,逐点测量,在多个站点获得,沿着与空间分辨全场测量研究动态摩擦法在存在非均匀滑动。利用高度受控的实验室环境,清楚地识别由亚瑞利或超剪切破裂及其速度和模式(脉冲状与裂纹状)转变引起的辐射地面运动的主导和区别特征。调查超剪切事件对地震危险性的未知影响。通过复杂的几何形状研究破裂传播,并描述此类事件的强地面运动的高频内容。引入复杂和更现实的断层几何基准和测量最终的滑动分布,除了时间分辨的多站记录,以验证运动学反演代码。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ares Rosakis其他文献

Near-field evidence for early supershear rupture of the Mw 7.8 Kahramanmaraş earthquake in Turkey
土耳其 7.8 级 Kahramanmaraş 地震早期超剪切破裂的近场证据
  • DOI:
    10.1038/s41561-025-01707-2
  • 发表时间:
    2025-06-11
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Ares Rosakis;Mohamed Abdelmeguid;Ahmed Elbanna
  • 通讯作者:
    Ahmed Elbanna

Ares Rosakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ares Rosakis', 18)}}的其他基金

Seismic and aseismic slip in faults with rock gouge using a 3D laboratory earthquake setup: the effect of fluid injection rate
使用 3D 实验室地震装置进行岩屑断层中的地震和地震滑移:流体注入速率的影响
  • 批准号:
    2045285
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Investigating dynamic friction using earthquake ruptures produced in the laboratory
利用实验室产生的地震破裂研究动摩擦
  • 批准号:
    1651235
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Interaction of earthquake rupture with idealized fault inhomogeneities: Effects on rupture speed, slip, and seismic radiation
地震破裂与理想断层不均匀性的相互作用:对破裂速度、滑移和地震辐射的影响
  • 批准号:
    1321655
  • 财政年份:
    2013
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Experimental Study of the Effects of Off-Fault Damage on Earthquake Rupture Mechanics
合作研究:断层损伤对地震破裂力学影响的实验研究
  • 批准号:
    0711545
  • 财政年份:
    2007
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Laboratory Studies of Spontaneous Earthquake Ruptures: Influence of Inhomogeneities
自发地震破裂的实验室研究:不均匀性的影响
  • 批准号:
    0538307
  • 财政年份:
    2006
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Symposium on "Dynamic Failure" and "Thin Film Mechanics"
“动态失效”与“薄膜力学”研讨会
  • 批准号:
    0244944
  • 财政年份:
    2002
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Laboratory Studies of Earthquake Dynamics
地震动力学实验室研究
  • 批准号:
    0207873
  • 财政年份:
    2002
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Physical Mechanisms Governing the Intersonic and Supersonic Decohesion of Bimaterials: Effects of Interfacial Strength, Loading Rate and Confining Pressure
控制双材料间声速和超声速消聚的物理机制:界面强度、加载速率和围压的影响
  • 批准号:
    9813100
  • 财政年份:
    1999
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Investigation of Dynamic Decohesion in Polymer/Metal and Polymer/Ceramic Bimaterial Interfaces
聚合物/金属和聚合物/陶瓷双材料界面动态脱聚的研究
  • 批准号:
    9424113
  • 财政年份:
    1995
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Dynamic Failure Mode Selection in Rate Sensitive Metal Alloys
速率敏感金属合金的动态失效模式选择
  • 批准号:
    9204026
  • 财政年份:
    1993
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant

相似海外基金

How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Projects
The properties, mechanisms, and hazards of interplate and intraplate earthquakes in India
印度板间和板内地震的性质、机制和危害
  • 批准号:
    NE/Z503484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
Largescale numerical investigation on the potential of MTL to produce supershear earthquakes
MTL 产生超剪切地震潜力的大规模数值研究
  • 批准号:
    23K22843
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on the development of joint panels for timber rigid frame structure that is possible to be used continuously after major earthquakes
大震后可继续使用的木刚架结构接缝板的研制
  • 批准号:
    23K04110
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220221
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
  • 批准号:
    23KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An experimental study on the shear instability induced by the high-pressure transformation of mantle olivine leading to the deep-focus earthquakes
地幔橄榄石高压转变引起深源地震剪切失稳的实验研究
  • 批准号:
    23KJ1743
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Further Advanced study of relationship between intraslab and slow earthquakes
板内地震与慢震关系的进一步深入研究
  • 批准号:
    23K03556
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220219
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220220
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了