Improving the Spatial and Temporal Resolution of Strain Rate Models of Continental Deformation

提高大陆变形应变率模型的空间和时间分辨率

基本信息

项目摘要

One consequence of plate tectonics is that in continental plate boundary zones, such as eastern Asia and western United States, tectonic deformation (and the associated earthquake activity) can be distributed over large areas. There are essentially two satellite-based observation methods with which this deformation can be accurately monitored. With the Global Positioning System (GPS) we can precisely measure the Earth's surface motion at the locations of GPS monuments. With the help of continuous GPS (CGPS) measurements, we can now track these motions (horizontal and vertical) on a daily basis. The other methodology is called InSAR, which uses radar images to map detailed changes in the surface of a large swath of land between two (infrequent) satellite passes. A limitation of InSAR is that it is most sensitive to vertical ground motions, which often have anthropogenic instead of tectonic origins. This project aims to bridge the gap between the ability of GPS and InSAR to capture fundamental deformation processes at high spatial and temporal resolution. InSAR-detected crustal motions are limited by being sampled intermittently and only in the satellite's line-of-sight (LOS). On the other hand, GPS-derived descriptions of the deformation field fail to achieve the same spatial resolution that is obtained with InSAR. The goal of project is to significantly improve the spatial resolution of existing secular strain rate tensor models using horizontal GPS velocities, and create additional models of time-variable deformation using continuous GPS (CGPS) data. This project will provide useful baseline estimates of secular and time-dependent horizontal deformation that could aid the interpretation of InSAR results, while also allowing new advances in studies of the geodynamics and seismic hazard of areas undergoing continental deformation. The work is focussed on the Pacific-North America (PA-NA) plate boundary zone, the Mediterranean and Middle East, and central and eastern Asia. There, all publicly available CGPS data will be analyzed and combined with estimates of the secular motions from published campaign-style GPS measurements. The horizontal velocities will be converted to continuous strain rate tensor models of secular deformation. Where data coverage is limited, other kinematic indicators (e.g,, fault slip rates/vectors, earthquake focal mechanisms) will be included for additional constraints on the strain style and localization. Improvements on the temporal variation of the strain rate field (most notably due to transients and postseismic deformation) will be limited to the PA-NA plate boundary zone, where CGPS sites are abundant. Reliable time-variable strain rate models (and associated changes in dilatational and shear strain) can likely be created for 1-4 week time windows, sufficient to capture most first order time-variable processes. Both static and dynamic deformation results will be converted to LOS equivalents for 1st order comparison with InSAR results. Estimates of the secular motions of CGPS sites as well as strain rate results (tensor parameters, maps, and movies) will be made available on a dedicated web portal, as a valuable tool for scientists and educators. Secular strain rates correlate closely with expected seismic hazard and can contribute directly to improving hazard maps. The time-dependent strain rate models may contribute to investigations in stress transfer, earthquake triggering and, ultimately, time-dependent seismic hazard.Through the project, a graduate student will be trained in the management of GPS data, the characterization of CGPS time-series, and crustal deformation modeling. The results (data and models) obtained from this project will be made available on a dedicated web portal, as a valuable tool for scientists and educators.
板块构造的一个结果是,在大陆板块边界地带,如东亚和美国西部,构造变形(以及相关的地震活动)可以分布在大片地区。基本上有两种基于卫星的观测方法可以精确地监测这种变形。有了全球定位系统(GPS),我们可以在GPS纪念碑的位置精确地测量地球表面的运动。在连续GPS (CGPS)测量的帮助下,我们现在可以每天跟踪这些运动(水平和垂直)。另一种方法被称为InSAR,它使用雷达图像来绘制两次(不频繁的)卫星通过之间大片土地表面的详细变化。InSAR的一个局限性是,它对垂直地面运动最敏感,而垂直地面运动通常是人为的,而不是构造的。该项目旨在弥合GPS和InSAR在高时空分辨率下捕获基本变形过程的能力之间的差距。insar探测到的地壳运动受到间歇性采样和卫星视距(LOS)的限制。另一方面,gps导出的形变场描述无法达到与InSAR相同的空间分辨率。该项目的目标是利用水平GPS速度显著提高现有的长期应变率张量模型的空间分辨率,并利用连续GPS (CGPS)数据建立额外的时变变形模型。该项目将提供有用的长期和随时间变化的水平变形基线估计,有助于InSAR结果的解释,同时也允许在地球动力学和经历大陆变形的地区的地震危险性研究方面取得新进展。这项工作的重点是太平洋-北美(PA-NA)板块边界带,地中海和中东,以及中亚和东亚。在那里,所有可公开获得的CGPS数据将被分析,并与已公布的运动式GPS测量结果的长期运动估计相结合。水平速度将转换为长期变形的连续应变速率张量模型。在数据覆盖范围有限的情况下,将包括其他运动学指标(例如,断层滑动率/矢量,地震震源机制),以对应变类型和定位进行额外约束。应变率场的时间变化(主要是由于瞬态和震后变形)的改进将仅限于PA-NA板块边界带,那里有丰富的CGPS站点。可靠的时变应变率模型(以及相关的膨胀应变和剪切应变的变化)可能在1-4周的时间窗口内创建,足以捕获大多数一阶时变过程。静态和动态变形结果都将转换为等效LOS,以便与InSAR结果进行一阶比较。CGPS站点的长期运动估计以及应变率结果(张量参数,地图和电影)将在专门的门户网站上提供,作为科学家和教育工作者的宝贵工具。长期应变率与预期的地震危险性密切相关,可以直接有助于改进灾害图。随时间变化的应变率模型有助于研究应力传递、地震触发以及最终的随时间变化的地震灾害。通过该项目,研究生将在GPS数据管理、CGPS时间序列表征和地壳变形建模方面得到培训。从这个项目获得的结果(数据和模型)将在一个专门的门户网站上提供,作为科学家和教育工作者的宝贵工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cornelis Kreemer其他文献

Cornelis Kreemer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cornelis Kreemer', 18)}}的其他基金

Collaborative Research: Using GPS to Unravel the Long-Term Kinematics and Dynamics of the American Southwest from an Ever-Changing Deformation Field
合作研究:利用 GPS 从不断变化的变形场中揭示美国西南部的长期运动学和动力学
  • 批准号:
    1615253
  • 财政年份:
    2016
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Geodetic Constraints on the Kinematics of the Colorado Plateau and its Western and Southern Margin
合作研究:科罗拉多高原及其西缘和南缘运动学的大地测量约束
  • 批准号:
    0952166
  • 财政年份:
    2010
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Thermal Contraction, Oceanic Intraplate Deformation, and Plate Circuit Closure
合作研究:热收缩、海洋板内变形和板电路闭合
  • 批准号:
    0928969
  • 财政年份:
    2009
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Research Grant
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
  • 批准号:
    23K28346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
  • 批准号:
    2335927
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
Spatial and Temporal Airflow Mechanism Regarding Transient Aerodynamics of a Supersonic Aircraft Configuration with a Cranked-Arrow Main Wing
曲柄箭头主翼超音速飞机瞬态空气动力学的时空气流机制
  • 批准号:
    23K04228
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
  • 批准号:
    NE/Y003519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Research Grant
Quantifying spatial and temporal patterns of natural disturbances in forests across Japan: Mapping disturbance regimes by satellite images
量化日本各地森林自然扰动的时空模式:通过卫星图像绘制扰动区域图
  • 批准号:
    23K19303
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploring Frontiers on applying CubeSat images with very high spatial and temporal resolutions to remotely estimate species-level tree phenology
探索应用具有极高空间和时间分辨率的 CubeSat 图像远程估计物种级树木物候的前沿
  • 批准号:
    23K18517
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
  • 批准号:
    10713733
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了