Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
基本信息
- 批准号:10713733
- 负责人:
- 金额:$ 40.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiochemical ReactionCarbonCatalysisChemicalsComplexCouplingCyclizationDrug IndustryDyesEmulsionsGenerationsHeatingHigh temperature of physical objectInterceptKineticsLightMethodsMicellesMolecularOrganic SynthesisPharmacologic SubstancePhotonsProcessReactionResearchResolutionSideTemperatureVisible Radiationcatalystchemical bondchemical reactiondesignenergy efficiencyepimerizationexperienceforgingirradiationlight effectsnanometernanoparticlesuccesstool
项目摘要
Project Summary
Photon-driven processes have emerged as a powerful tool for achieving challenging bond cleavage and
bond formation. Photocatalysis offers the benefit of temporal and spatial control with low energy light, which has
been widely advantageous for efficiently building molecular complexity from simple starting materials. The
judicious choice of photocatalysts enables the precision of reactivity that is rarely achieved with other forms of
catalysis and heating. An underused area of photocatalysis is photothermal conversion. Irradiation of specific
nanoparticles or dyes with visible light creates intense thermal gradients in a photothermal conversion process.
In contrast to bulk heating, where the temperature remains uniform across a reaction medium, substrates would
only experience thermal energy within a few nanometers of excitation under temporal heating. Consequently,
this process would use irradiation to drive chemical processes at high temperatures with temporal and spatial
control. Spatial control enables the selective formation of highly reactive species without competing bimolecular
side reactions.
The proposed research comprises three fundamental projects exploring the use of photothermal catalysis
to enable the synthesis of complex molecules using visible light irradiation. First, high-temperature thermal
rearrangements will be achieved using carbon-based nanoparticles and visible light irradiation under mild
conditions. This strategy will enable the synthesis of complex products without thermal decomposition generally
associated with bulk thermolysis. Additionally, the identification of various photothermal agents and synthetic
elaborations will generate more efficient catalysts. In the second project, photothermal heating will generate
carbon-centered radicals through C–C bond homolysis. Intercepting these highly reactive intermediates will forge
new C–C bonds in ring expansion reactions, in intramolecular cyclizations. Specific photothermal agent design
will enable intermolecular ring expansions to build molecular complexity. In a third project, the C–C bond
homolysis reactions identified in project two will be used in dynamic kinetic resolutions for atom economical
synthesis of enantioenriched pharmaceutical compounds. Emulsions will confine thermal gradients to within
micelles enabling the coupling of thermal epimerization reactions with highly selective enzymatic reactions.
Combined, these three projects will develop an understanding of photothermal catalysis and the effect of light
and intensity on generation of thermal gradients. A thorough understanding of how these thermal gradients can
be leveraged for high temperature reactions with the spatial and temporal control of visible light will enable new
synthetic bond disconnections previously unrealized.
项目摘要
光子驱动的过程已经成为实现具有挑战性的键断裂的有力工具,
成键光催化提供了利用低能量光的时间和空间控制的益处,其具有
对于从简单的起始材料有效地构建分子复杂性具有广泛的优势。的
光催化剂的明智选择能够实现用其它形式的光催化剂很少实现的反应性的精确性。
催化和加热。光热转换是一个未充分利用的领域。特定辐射
纳米颗粒或染料与可见光的接触在光热转换过程中产生强烈的热梯度。
与其中温度在整个反应介质上保持均匀的整体加热相反,衬底将
在瞬时加热下仅经历激发的几纳米内的热能。因此,委员会认为,
这一过程将利用辐射在高温下驱动化学过程,
控制空间控制使得能够选择性地形成高反应性物种,而无需竞争性双分子
副反应
拟议的研究包括三个基本项目,探索利用光热催化
以使得能够使用可见光照射合成复杂分子。一、高温热
重排将实现使用碳基纳米粒子和可见光照射下温和
条件这种策略将使合成复杂的产品,而没有热分解一般
与散装therapy有关。此外,还对各种光热剂和合成物进行了鉴定
精细加工将产生更有效的催化剂。在第二个项目中,光热加热将产生
通过C-C键均裂形成碳中心自由基。拦截这些高活性的中间体,
扩环反应中的新C-C键,分子内环化。特定光热剂设计
将使分子间的环扩张,以建立分子的复杂性。在第三个项目中,
方案二中确定的均裂反应将用于原子经济的动态动力学拆分
对映体富集的药物化合物的合成。乳化液会将温度梯度限制在
胶束能够使热差向异构化反应与高选择性酶促反应偶联。
结合起来,这三个项目将发展光热催化和光的影响的理解
以及热梯度产生的强度。深入了解这些热梯度如何
利用可见光的空间和时间控制进行高温反应将使新的
以前未实现的合成键断开。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Stache其他文献
Erin Stache的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Creation of nano-biochemical reaction platform using hydrated polymer brush thin film
利用水合聚合物刷薄膜创建纳米生化反应平台
- 批准号:
23K17717 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Creation of biochemical reaction field for target specific reaction in cellulo, by synthetic chromatin liquid-liquid phase separation
通过合成染色质液-液相分离,为纤维素中的目标特异性反应创建生化反应场
- 批准号:
22KJ0929 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 40.58万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2020
- 资助金额:
$ 40.58万 - 项目类别:
Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
DGECR-2019-00215 - 财政年份:2019
- 资助金额:
$ 40.58万 - 项目类别:
Discovery Launch Supplement
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2019
- 资助金额:
$ 40.58万 - 项目类别:
Discovery Grants Program - Individual
Identification of Metabolic Phenotypes and Systemic Biochemical Reaction Networks Associated with Human Blood Pressure
与人体血压相关的代谢表型和全身生化反应网络的鉴定
- 批准号:
MR/S004033/1 - 财政年份:2018
- 资助金额:
$ 40.58万 - 项目类别:
Fellowship
CAREER: Biochemical Reaction Systems: from Structure to Dynamics
职业:生化反应系统:从结构到动力学
- 批准号:
1752672 - 财政年份:2018
- 资助金额:
$ 40.58万 - 项目类别:
Continuing Grant
Construction of novel self-oscillating polymer systems utilizing biochemical reaction
利用生化反应构建新型自振荡聚合物系统
- 批准号:
17K19148 - 财政年份:2017
- 资助金额:
$ 40.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)