Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
基本信息
- 批准号:10713733
- 负责人:
- 金额:$ 40.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiochemical ReactionCarbonCatalysisChemicalsComplexCouplingCyclizationDrug IndustryDyesEmulsionsGenerationsHeatingHigh temperature of physical objectInterceptKineticsLightMethodsMicellesMolecularOrganic SynthesisPharmacologic SubstancePhotonsProcessReactionResearchResolutionSideTemperatureVisible Radiationcatalystchemical bondchemical reactiondesignenergy efficiencyepimerizationexperienceforgingirradiationlight effectsnanometernanoparticlesuccesstool
项目摘要
Project Summary
Photon-driven processes have emerged as a powerful tool for achieving challenging bond cleavage and
bond formation. Photocatalysis offers the benefit of temporal and spatial control with low energy light, which has
been widely advantageous for efficiently building molecular complexity from simple starting materials. The
judicious choice of photocatalysts enables the precision of reactivity that is rarely achieved with other forms of
catalysis and heating. An underused area of photocatalysis is photothermal conversion. Irradiation of specific
nanoparticles or dyes with visible light creates intense thermal gradients in a photothermal conversion process.
In contrast to bulk heating, where the temperature remains uniform across a reaction medium, substrates would
only experience thermal energy within a few nanometers of excitation under temporal heating. Consequently,
this process would use irradiation to drive chemical processes at high temperatures with temporal and spatial
control. Spatial control enables the selective formation of highly reactive species without competing bimolecular
side reactions.
The proposed research comprises three fundamental projects exploring the use of photothermal catalysis
to enable the synthesis of complex molecules using visible light irradiation. First, high-temperature thermal
rearrangements will be achieved using carbon-based nanoparticles and visible light irradiation under mild
conditions. This strategy will enable the synthesis of complex products without thermal decomposition generally
associated with bulk thermolysis. Additionally, the identification of various photothermal agents and synthetic
elaborations will generate more efficient catalysts. In the second project, photothermal heating will generate
carbon-centered radicals through C–C bond homolysis. Intercepting these highly reactive intermediates will forge
new C–C bonds in ring expansion reactions, in intramolecular cyclizations. Specific photothermal agent design
will enable intermolecular ring expansions to build molecular complexity. In a third project, the C–C bond
homolysis reactions identified in project two will be used in dynamic kinetic resolutions for atom economical
synthesis of enantioenriched pharmaceutical compounds. Emulsions will confine thermal gradients to within
micelles enabling the coupling of thermal epimerization reactions with highly selective enzymatic reactions.
Combined, these three projects will develop an understanding of photothermal catalysis and the effect of light
and intensity on generation of thermal gradients. A thorough understanding of how these thermal gradients can
be leveraged for high temperature reactions with the spatial and temporal control of visible light will enable new
synthetic bond disconnections previously unrealized.
项目摘要
光子驱动的过程已成为实现挑战债券裂解和的强大工具
债券形成。光催化提供了具有低能光的临时和空间控制的好处,
对于简单的起始材料的有效构建分子复杂性是广泛有利的。这
明智的光催化剂选择可以使反应性的精度很少获得
催化和加热。光催化的未充分利用区域是光热转化。特定的辐照
具有可见光的纳米颗粒或染料会在光热转化过程中产生强烈的热梯度。
与散装加热相反,在反应介质中温度保持均匀,底物将
仅在临时加热下的几种兴奋剂中体验热能。最后,
此过程将使用辐照以暂时和空间的高温驱动化学过程
控制。空间控制能够选择性形成高反应性物种,而无需竞争双重分子
侧面反应。
拟议的研究组成了三个基本项目,探索了光热催化的使用
使用可见光照射能够合成复杂分子。首先,高温热
将使用基于碳的纳米颗粒和中间的可见光照射来重新排列
状况。该策略将使复杂产物的合成无热分解
与散装热解有关。此外,鉴定各种光热剂和合成
阐述将产生更有效的催化剂。在第二个项目中,光热加热将产生
通过C-C键同伊分析以碳为中心的自由基。拦截这些高度反应性的中间体将锻造
环内循环中的环膨胀反应中的新C – C键。特定的光热剂设计
将实现分子间环的扩展以构建分子复杂性。在第三个项目中,C -C债券
项目第二个项目中确定的均解反应将用于原子经济的动态动力学分辨率
映射药物化合物的合成。乳液会将热梯度局限于内部
胶束可以使热发作反应与高选择性酶促反应偶联。
结合在一起,这三个项目将对光热催化和光的影响有所了解
和热梯度产生的强度。对这些热梯度的透彻了解
通过对可见光的空间和临时控制,可以利用高温反应来实现新的
合成键断开以前未实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Stache其他文献
Erin Stache的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向拓扑结构的生化反应网络的稳定性分析及稳定化方法研究
- 批准号:62303409
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
页岩油污水厌氧反应器能质输运过程太阳光-热-生化耦合作用机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高固相升流式光生化制氢反应器温度分布特性及均热机理研究
- 批准号:52206244
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水稻降解外源氰化物(CN-)生化反应“热区”定位及靶向调控CN-降解途径的机理研究
- 批准号:42277361
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于热力学的生化反应模型简化理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an innovative in vivo voltammetric technique for measurements of tonic serotonin concentrations in the mammalian brain.
开发一种创新的体内伏安技术,用于测量哺乳动物大脑中的补给血清素浓度。
- 批准号:
10559303 - 财政年份:2023
- 资助金额:
$ 40.58万 - 项目类别:
Metalloprotein Mechanisms of Redox Regulation and Catalysis
氧化还原调节和催化的金属蛋白机制
- 批准号:
10643866 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别:
Metalloprotein Mechanisms of Redox Regulation and Catalysis
氧化还原调节和催化的金属蛋白机制
- 批准号:
10204329 - 财政年份:2021
- 资助金额:
$ 40.58万 - 项目类别: