Hybridizable Discontinuous Galerkin Methods for Partial Differential Equations and Theoretical Questions in Finite Elements
偏微分方程与有限元理论问题的混合间断伽辽金法
基本信息
- 批准号:0914596
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is awarded using funds made available by the American Recovery and Reinvestment Act of 2009 (Public Law 111-5), The main part of this project will focus on developing and analyzing discontinuous Galerkin (DG) methods for problems arising in structural mechanics and fluid flow. In particular, the P.I. will analyze hybridizable discontinuous Galerkin (HDG) methods for plate bending problems, elasticity equations and convection-diffusion equations. One advantage of HDG methods is that they can approximate all the variables of interest in an optimal way while using equal-order approximations for all the variables. More importantly, many of the global degrees of freedom can be eliminated by the use of Lagrange multipliers, making the final linear system smaller than linear systems arising in standard DG methods. Another component of the project is the investigation of DG methods for multiscale problems. The P.I. hopes to develop higher-order DG methods using non-polynomial basis functions. A final project will be answering theoretical questions in finite elements. The P.I. will prove pointwise error estimates for finite element methods applied to the Stokes problem on general convex polyhedral domains. Then, the P.I. will prove error estimates for higher-order streamline diffusion methods on layer-adapted meshes. Numerical simulations play a central role in modern engineering. For example, they are crucial in the design of airplanes, automobiles, and oil platforms, to name a few. They allow industries to test structures using computers without ever building an actual physical model. One of the reasons this is possible is that very efficient and reliable numerical methods have been developed over the years. However, to meet new computational challenges, researchers are working on improving existing algorithms and on the development of new competitive ones. In this project, the P.I. will work on developing a new, promising family of numerical methods called hybridizable discontinuous Galerkin methods. In order to gain a deeper understanding of these numerical methods and related ones, the P.I. will also investigate mathematical aspects of such methods.
该提案是使用2009年美国复苏和再投资法案(公法111-5)提供的资金授予的,该项目的主要部分将侧重于开发和分析结构力学和流体流动中出现的问题的不连续Galerkin(DG)方法。特别是,P.I.将分析杂交间断伽辽金(HDG)方法的板弯曲问题,弹性方程和对流扩散方程。 HDG方法的一个优点是它们可以以最佳方式近似所有感兴趣的变量,同时对所有变量使用等阶近似。更重要的是,许多全球的自由度可以通过使用拉格朗日乘子消除,使最终的线性系统小于标准DG方法中产生的线性系统。 该项目的另一个组成部分是DG方法的多尺度问题的调查。 私家侦探希望开发高阶DG方法使用非多项式基函数。 期末专题将回答有限元素的理论问题。私家侦探将证明一般凸多面体域上的Stokes问题的有限元方法的逐点误差估计。 然后私家侦探将证明层适应网格上高阶流线扩散方法的误差估计。 数值模拟在现代工程中发挥着核心作用。 例如,它们在飞机、汽车和石油平台的设计中至关重要。 它们允许工业使用计算机测试结构,而无需构建实际的物理模型。这是可能的原因之一是多年来已经开发出非常有效和可靠的数值方法。 然而,为了应对新的计算挑战,研究人员正在努力改进现有的算法,并开发新的竞争性算法。在这个项目中,P.I.将致力于开发一个新的,有前途的家庭的数值方法称为杂交不连续伽辽金方法。为了更深入地理解这些数值方法和相关的,PI。还将研究这些方法的数学方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johnny Guzman其他文献
Johnny Guzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johnny Guzman', 18)}}的其他基金
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
- 批准号:
2309606 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Finite Element Exterior Calculus with Smoother Piecewise Polynomials
具有更平滑分段多项式的有限元外微积分
- 批准号:
1913083 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Topics in the analysis of finite elements
有限元分析主题
- 批准号:
1318108 - 财政年份:2013
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
Discontinuous Galerkin Methods for Problems with Fractional Derivatives
解决分数阶导数问题的不连续伽辽金方法
- 批准号:
1115416 - 财政年份:2011
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Finite Element Exterior Calculus"
NSF/CBMS 数学科学区域会议 - “有限元外微积分”
- 批准号:
1138011 - 财政年份:2011
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
- 批准号:
566831-2021 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2020
- 资助金额:
$ 18.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
- 批准号:
1912715 - 财政年份:2019
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant