Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
基本信息
- 批准号:1912715
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A prime example of multi-phase flow in karstic geometry is flow in natural karst aquifers. Karst aquifers supply about 40 percent of the drinking water in the United States, and are susceptible to contamination. During flooding seasons, the water pressure in the conduits is larger than that in the adjacent porous media so that conduit-borne contaminants are driven into the porous media. Likewise during dry seasons, contaminants sequestered in the porous media are released into flow in the conduits due to the pressure reversal, and exit through springs and wells into surface water systems. This exchange of flow between conduits and porous media poses an environmental issue in that sequestered contaminants may influence the quality of underground water sources and thus significantly decrease water availability. Besides applications in environmental science, multi-phase flows in karstic geometry are also important in oil recovery in petroleum engineering, in Polymer Electrolyte Membrane fuel cell technology, as well as in cardiovascular modeling and simulation in biomedical sciences. In these applications multi-phase flows in conduits and in porous media interact with each other, and therefore have to be considered together. Geometric configurations that consist of both conduits and porous media are termed as karstic geometry. Despite the importance of the subject, little work has been done in this direction, due to the nature of deforming boundary of the problem, the complex geometry, the coupling of different dynamics via domain interface, the vast disparity of spatial and temporal scales and so on.The investigator will examine modeling and the design of hybridizable discontinuous Galerkin (HDG) methods for two-phase flows in karstic geometry. Based on the phase field formalism and Onsager's variational principle, the PI will derive a degenerate Cahn-Hilliard-Stokes-Darcy model for two-phase flow of arbitrary density and viscosity contrast in karstic geometry. The derivation seeks to overcome a number of obstacles in modeling of multiphase flows in karstic geometry, including maintaining a divergence-free velocity, deriving an explicit degenerate mobility function, and incorporating multiphysics such as wetting and solute. The PI then will introduce and analyze superconvergent HDG methods for solving the diffuse interface model by exploiting approximation via polynomials of mixed orders and by carefully stabilizing the nonlinear advection in the presence of high-order diffusion. Finally, the PI and his collaborators will develop scalable HDG multigrid solvers for diffuse interface fluid models. The practical solvers will further address the lack of efficient iterative solvers in the HDG community. Graduate students will participate in the work of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
岩溶几何学中多相流的一个主要例子是天然岩溶含水层中的流动。岩溶含水层提供了美国约40%的饮用水,而且很容易受到污染。在洪水季节,管道中的水压力大于相邻多孔介质中的水压力,从而将水携带的污染物驱入多孔介质中。同样,在旱季,由于压力逆转,多孔介质中封存的污染物被释放到管道中的水流中,并通过泉水和威尔斯进入地表水系统。管道和多孔介质之间的这种流动交换造成了一个环境问题,因为隔离的污染物可能影响地下水源的质量,从而显著降低水的可用性。 除了在环境科学中的应用外,岩溶几何中的多相流在石油工程中的石油回收、聚合物电解质膜燃料电池技术以及生物医学科学中的心血管建模和模拟中也很重要。在这些应用中,管道中的多相流和多孔介质中的多相流相互作用,因此必须一起考虑。由管道和多孔介质组成的几何构型称为岩溶几何构型。尽管这一课题的重要性,但由于问题的变形边界的性质,复杂的几何形状,不同动力学通过域界面的耦合,空间和时间尺度的巨大差异等,在这方面的工作已经做得很少。研究者将研究建模和设计的杂交间断Galerkin(HDG)方法在岩溶几何两相流。基于相场理论和Onsager变分原理,PI将推导出适用于任意密度和粘度差的两相流的退化Cahn-Hilliard-Stokes-Darcy模型。推导旨在克服一些障碍,在岩溶几何多相流的建模,包括保持一个无发散的速度,推导出一个明确的退化流动性函数,并将多物理,如润湿和溶质。然后,PI将介绍和分析超收敛HDG方法,通过利用混合阶多项式近似和在高阶扩散存在下仔细稳定非线性平流来求解扩散界面模型。最后,PI和他的合作者将为扩散界面流体模型开发可扩展的HDG多重网格求解器。实用的求解器将进一步解决HDG社区缺乏有效的迭代求解器的问题。研究生将参与该项目的工作。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities
不同密度和粘度Cahn-Hilliard-Navier-Stokes-Darcy系统的无条件稳定数值方法
- DOI:10.1016/j.jcp.2022.110968
- 发表时间:2022-01
- 期刊:
- 影响因子:4.1
- 作者:Yali Gao;Daozhi Han;Xiaoming He;Ulrich Rüde
- 通讯作者:Ulrich Rüde
On the nonlinear stability and the existence of selective decay states of 3D quasi‐geostrophic potential vorticity equation
- DOI:10.1002/mma.5962
- 发表时间:2019-11
- 期刊:
- 影响因子:2.9
- 作者:O. Esen;Daozhi Han;Taylan Şengül;Quan Wang
- 通讯作者:O. Esen;Daozhi Han;Taylan Şengül;Quan Wang
Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system
Cahn-Hilliard-Stokes-Darcy 系统解耦数值格式的误差估计
- DOI:10.1093/imanum/drab046
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Wenbin Chen;Daozhi Han;Xiaoming Wang;Shufen Wang;Yichao Zhang
- 通讯作者:Yichao Zhang
Second-order Decoupled Energy-stable Schemes for Cahn-Hilliard-Navier-Stokes equations
- DOI:10.1016/j.jcp.2021.110536
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Jia Zhao
- 通讯作者:Jia Zhao
Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields
- DOI:10.1016/j.cnsns.2020.105213
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Feng Bai;Daozhi Han;Xiaoming He;Xiaofeng Yang
- 通讯作者:Feng Bai;Daozhi Han;Xiaoming He;Xiaofeng Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daozhi Han其他文献
Rayleigh-Taylor instability for nonhomogeneous incompressible geophysical fluid with partial viscosity
具有部分粘性的非均匀不可压缩地球物理流体的瑞利-泰勒不稳定性
- DOI:
10.1016/j.jde.2024.07.042 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:2.300
- 作者:
Chao Xing;Yanlong Fan;Daozhi Han;Quan Wang - 通讯作者:
Quan Wang
Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry
岩溶几何中两相不可压缩流Cahn-Hilliard-Stokes-Darcy系统全局弱解的存在性和唯一性
- DOI:
10.1016/j.jde.2014.07.013 - 发表时间:
2014-05 - 期刊:
- 影响因子:2.4
- 作者:
Daozhi Han;Xiaoming Wang;Hao Wu - 通讯作者:
Hao Wu
A second-order, mass-conservative, unconditionally stable and bound-preserving finite element method for the quasi-incompressible Cahn-Hilliard-Darcy system
- DOI:
10.1016/j.jcp.2024.113340 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yali Gao;Daozhi Han;Xiaoming Wang - 通讯作者:
Xiaoming Wang
Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media
叠加自由流和多孔介质中热对流的动态转变和分叉
- DOI:
10.1016/j.physd.2020.132687 - 发表时间:
2020-12 - 期刊:
- 影响因子:0
- 作者:
Daozhi Han;Quan Wang;Xiaoming Wang - 通讯作者:
Xiaoming Wang
Uniquely Solvable and Energy Stable Decoupled Numerical Schemes for the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq System
Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq 系统的独特可解且能量稳定的解耦数值方案
- DOI:
10.1007/s10915-020-01341-7 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Wenbin Chen;Daozhi Han;Xiaoming Wang;Yichao Zhang - 通讯作者:
Yichao Zhang
Daozhi Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daozhi Han', 18)}}的其他基金
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Hybridizable间断谱元方法及其在波散射问题中的应用
- 批准号:11341002
- 批准年份:2013
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
- 批准号:
566831-2021 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multiscale and Hybridizable Discontinuous Galerkin Methods for Dispersive Equations and Systems
色散方程和系统的多尺度和可混合非连续伽辽金方法
- 批准号:
1818998 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant