Anderson Acceleration for Fixed-Point Iteration

定点迭代的安德森加速

基本信息

  • 批准号:
    0915183
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This research will focus on acceleration methods for fixed-point iteration that are based on a method introduced by D. G. Anderson in 1965. This method has been used widely and with considerable success within the computational physics, chemistry, and materials communities as a means of accelerating the self-consistent field iteration used in electronic structure computations. However, it has been untried or underexploited in many other important applications in which it seems likely to be equally successful. Moreover, it has received relatively little attention from mathematicians and numerical analysts, despite there being many significant unanswered mathematical questions. The goals of this research are to analyze the convergence of the method, to explore its effectiveness across a broad range of important applications, and ultimately to develop extensions with improved global convergence and stability properties.The method to be investigated is at present an important method for accelerating computations used in materials science, for example, to determine properties of "designer" materials in nanotechnology applications. In practice, the method is usually very effective but occasionally fails. The first goal of this research is to develop a theoretical understanding of the method that explains this behavior and points the way to methods that are more consistently successful. The method is general in nature and can potentially be much more broadly applied. The second goal of this research is to determine the effectiveness of the method in a variety of important applications, ranging from statistical estimation to computational modeling of complex physical phenomena. If successful, this research can result in much faster computational methods for challenging tasks such as extracting information from extremely large data sets and simulating fluid flow coupled with chemical reactions.
本文主要研究基于D。G. 1965年的安德森。这种方法已被广泛使用,并在计算物理,化学和材料社区内取得了相当大的成功,作为加速电子结构计算中使用的自洽场迭代的一种手段。 然而,在许多其他重要的应用中,它似乎也同样可能取得成功,但却没有得到尝试或充分利用。此外,尽管有许多重要的数学问题没有得到解答,但它受到数学家和数值分析师的关注相对较少。本研究的目标是分析该方法的收敛性,探索其有效性在广泛的重要应用,并最终开发扩展与改进的全局收敛性和稳定性properties.The方法被调查是目前一个重要的方法,用于加速计算在材料科学中使用,例如,以确定性能的“设计师”的材料在纳米技术的应用。在实践中,这种方法通常非常有效,但偶尔会失败。本研究的第一个目标是从理论上理解解释这种行为的方法,并指出更持续成功的方法。 该方法本质上是通用的,并且可以潜在地更广泛地应用。本研究的第二个目标是确定该方法在各种重要应用中的有效性,从统计估计到复杂物理现象的计算建模。如果成功,这项研究可以为具有挑战性的任务带来更快的计算方法,例如从超大数据集中提取信息和模拟与化学反应耦合的流体流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Homer Walker其他文献

Homer Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Homer Walker', 18)}}的其他基金

MRI: Acquisition of a High-Performance Computing System for Research, Education, and Training
MRI:采购用于研究、教育和培训的高性能计算系统
  • 批准号:
    1337943
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Acquisition of a High-Performance Computer for Mathematical Sciences Applications
采购用于数学科学应用的高性能计算机
  • 批准号:
    9870971
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Iterative Methods for Large Scale Nonlinear and Linear Systems
大规模非线性和线性系统的迭代方法
  • 批准号:
    9727128
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Iterative Methods for Large-Scale NonLinear and Linear Systems
数学科学:大规模非线性和线性系统的迭代方法
  • 批准号:
    9400217
  • 财政年份:
    1994
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Fast Algorithms for Estimating Mixture Parameters
估计混合物参数的快速算法
  • 批准号:
    8800995
  • 财政年份:
    1988
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Regional Conference on Nonlinear Diffusion, Houston, Texas, June 28 - July 2, 1976
非线性扩散区域会议,德克萨斯州休斯顿,1976 年 6 月 28 日至 7 月 2 日
  • 批准号:
    7609519
  • 财政年份:
    1976
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Generation of Liapunov Functionals For Distributedparameter Elastic Systems
分布式参数弹性系统李亚普诺夫泛函的生成
  • 批准号:
    7303520
  • 财政年份:
    1973
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了