Image Reconstruction In Diffuse Optical Tomography With Sparsity Constraints

具有稀疏性约束的漫射光学层析成像中的图像重建

基本信息

  • 批准号:
    0915214
  • 负责人:
  • 金额:
    $ 16.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI will investigate Sparsity Constrained Regularization (SCR) for solving the Diffuse Optical Tomography (DOT) inverse problem. Two recent algorithms are available for the implementation of SCR in DOT: the Generalized Conditional Gradient Method with Sparsity Constraint (GCGM-SC) and the Generalized Semi-smooth Newton's Method with Sparsity Constraint (GSNM-SC). The efficacy of GCGM-SC has been demonstrated with both theoretical and numerical results for linear and some non-linear problems. GCGM-SC, which has also been derived for linear problems, minimizes a given functional, not necessarily convex, with sparsity constraint with respect to a given basis. In this project, the computational aspect of the DOT inverse problem will be investigated to (i) develop a reconstruction algorithm for DOT using GCGM-SC, (ii) devise a strategy for computing adaptive basis such as finite elements to take full advantage of the sparsity constraint idea, (iii) extend GSNM-SC to nonlinear problems and compare GSNM-SC to Tikhonov regularization, and (iv) perform convergence analysis of the proposed GSNM-SC and GCGM-SC in DOT. The interdisciplinary research project seeks to integrate education and research and foster an international exchange of students. The educational activities in the project will include: (i) international research experience for students, (ii) student exchange between Clemson University and the University of Bremen, Germany, (iii) the incorporation of much of the research activities into teaching activities to help students bridge course materials with research, (iv) exposure of high school students to applied mathematics research, and (v) attraction of underrepresented groups to pursue appliedmathematics.Diffuse Optical Tomography (DOT) is a method for imaging a highly scattering medium using near infrared and visible light. For example, optical tomography of biological tissue has potential applications for the early detection of breast cancer. One major advantage of DOT is that it is less expensive and non-invasive as compared with x-ray mammography. DOT imaging technology also shows great promise as a tool for initiating discoveries in physics, biology, and medicine. However, despite its great potential, it has yet to be commercially or medically successful as the instability in image reconstruction results in the blurring of any resulting image. To overcome these difficulties, we will investigate novel mathematical techniques for image reconstruction. Research applications will vary from cancer detection in biomedical imaging to land mine detection in remote sensing to imaging objects in the ocean. Research results are also expected to contribute to scientific knowledge in neutron transport, transport in atmospheric science, photothermal spectroscopies and microscopies, laser pump probes, diffuse photon density waves and new tomography technologies, such as optical, electronic and thermal imaging, and biomedical diagnostics.
在本项目中,PI将研究稀疏约束正则化(SCR)来解决漫射光学层析成像(DOT)逆问题。两个最近的算法可用于SCR在DOT中的实施:稀疏约束的广义条件梯度法(GCGM-SC)和稀疏约束的广义半光滑牛顿法(GSNM-SC)。GCGM-SC的有效性已被证明与线性和一些非线性问题的理论和数值结果。GCGM-SC,这也是推导出的线性问题,最小化一个给定的功能,不一定是凸的,稀疏约束相对于一个给定的基础。在这个项目中,DOT逆问题的计算方面将被研究以(i)使用GCGM-SC开发DOT的重建算法,(ii)设计用于计算自适应基(例如有限元)的策略以充分利用稀疏约束思想,(iii)将GSNM-SC扩展到非线性问题并将GSNM-SC与Tikhonov正则化进行比较,以及(iv)在DOT中执行所提出的GSNM-SC和GCGM-SC的收敛性分析。跨学科研究项目旨在整合教育和研究,促进学生的国际交流。该项目的教育活动将包括:(i)学生的国际研究经验,(ii)克莱姆森大学和德国的不莱梅大学之间的学生交流,(iii)将大部分研究活动纳入教学活动,以帮助学生将课程材料与研究联系起来,(iv)高中学生接触应用数学研究,以及(v)吸引代表性不足的群体追求应用数学。漫射光学层析成像(DOT)是一种利用近红外和可见光对高散射介质成像的方法。例如,生物组织的光学层析成像对于乳腺癌的早期检测具有潜在的应用。DOT的一个主要优点是,与X射线乳房X线摄影相比,它更便宜且无创。DOT成像技术也显示出作为物理学、生物学和医学发现的工具的巨大潜力。然而,尽管其具有巨大的潜力,但由于图像重建的不稳定性导致任何所得图像的模糊,因此其在商业或医学上尚未成功。为了克服这些困难,我们将研究新的数学技术的图像重建。研究应用将各不相同,从生物医学成像中的癌症检测到遥感中的地雷检测,再到海洋中的物体成像。研究结果还有望为中子输运、大气科学输运、光热光谱学和显微镜、激光泵探针、漫射光子密度波和新断层扫描技术(例如光学、电子和热成像)以及生物医学诊断等领域的科学知识做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taufiquar Khan其他文献

Decoupled algorithms and analyses for an advection-reaction-diffusion model with stocking and harvesting
具有放养和捕捞的对流 - 反应 - 扩散模型的解耦算法与分析
  • DOI:
    10.1016/j.camwa.2025.03.024
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Mayesha Sharmim Tisha;Md. Kamrujjaman;Muhammad Mohebujjaman;Taufiquar Khan
  • 通讯作者:
    Taufiquar Khan
Structural changes in Mangroves of Sundarban in Bangladesh: effects of climate change and human disturbances
  • DOI:
    10.1007/s40808-023-01699-1
  • 发表时间:
    2023-01-30
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Farah Tasnim;Md. Kamrujjaman;Taufiquar Khan
  • 通讯作者:
    Taufiquar Khan
A Bayesian level-set inversion method for simultaneous reconstruction of absorption and diffusion coefficients in diffuse optical tomography
漫光学层析成像中吸收和扩散系数同时重建的贝叶斯水平集反演方法
  • DOI:
    10.48550/arxiv.2404.11552
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Abhishek;Thilo Strauss;Taufiquar Khan
  • 通讯作者:
    Taufiquar Khan
Physically based regularization of hydrogeophysical inverse problems for improved imaging of process‐driven systems
基于物理的水文地球物理反演问题正则化,以改进过程驱动系统的成像
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Oware;S. Moysey;Taufiquar Khan
  • 通讯作者:
    Taufiquar Khan

Taufiquar Khan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taufiquar Khan', 18)}}的其他基金

Collaborative Research: Building Confidence through Culturally Relevant Co-requisite Mathematics Courses within Math Pathways
合作研究:通过数学途径中文化相关的必修数学课程建立信心
  • 批准号:
    2142143
  • 财政年份:
    2022
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Standard Grant
Emphasizing Core Calculus Concepts Using Biomedical Applications to Engage, Mentor and Retain STEM Students
强调核心微积分概念,利用生物医学应用来吸引、指导和留住 STEM 学生
  • 批准号:
    1044265
  • 财政年份:
    2011
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
  • 批准号:
    10083559
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Collaborative R&D
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
  • 批准号:
    MR/Z503836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
  • 批准号:
    EP/X036642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Research Grant
Ethnography of Archaeology and Architectural Reconstruction
考古民族志与建筑重建
  • 批准号:
    23K25438
  • 财政年份:
    2024
  • 资助金额:
    $ 16.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了