NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approach
NER:通过仿生和环保方法催化形成纳米结构陶瓷
基本信息
- 批准号:0919033
- 负责人:
- 金额:$ 8.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
National Science Foundation - Active Nanostructure and Nanosystems (ANN) (NSF 06-595)Nanoscale Exploratory Research (NER)Proposal Number: CBET-0708054Principal Investigator: Adamson, DouglasAffiliation: Princeton UniversityProposal Title: NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approachNER:Catalytic formation of nanostructured ceramics by a bio-mimetic andenvironmentally friendly approachFor millions of years nature has been able to make ceramic structures with precise detail and control at the nanoscale. The strength of the abalone shell and the intricate designs found in diatoms are two examples of organisms producing highly ordered ceramic materials under conditions of near-neutral pH at ambient temperatures. In the case of man-made materials, not only is the precise nano-structure lacking, the conditions required to form ceramics involve extremes of pH and/or high temperatures. These conditions are detrimental in terms of cost and environmental impact, and may preclude the use of many organic structure-directing agents as well as the incorporation of catalysts that could be included in a porous ceramic matrix. A synthetic system that can mimic the ability of nature to produce well ordered ceramics at the nano-scale under mild conditions would find applications ranging in structural materials, catalysis, and filtration technologies. The natural system on which we have focused our efforts is the protein Silicatein, found in the marine sponge Tethya aurantia. This sponge creates silica spicules that are composed of a silica outer casing comprising 75% of the spicule weight and a core containing a mixture of proteins. Of the protein found in the core, 70% is Silicatein. We focused on this protein for two reasons: first, the structure of the protein had been determined and second, the mechanism of its catalysis had been elucidated. These studies revealed that Silicatein has the ability to catalyze the hydrolysis of tetraethoxysilane (TEOS). The subsequent condensation of the hydrolyzed silane is rapid and results in the formation of silca. Exploiting this mechanism, the relatively stable TEOS can be quickly converted to silca at room temperature and under near neutral pH. We have recently developed a synthetic, non-peptide based polymer that mimics the catalytic function of the protein Silicatein. By incorporating analogs of the functional groups shown to be critical in the catalytic activity of the protein into a purely synthetic polymer, we have demonstrated catalytic function in a non-peptide block copolymer. This work has been described in a manuscript currently under consideration by the Journal of the American Chemical Society. We have demonstrated by numerous analytical and chemical methods the catalytic nature of our polymer with respect to TEOS condensation. Building on our successful demonstration of catalysis, we will exploit the amphiphilic nature of our block copolymer catalyst to form nano-structured ceramics under near-neutral pH and ambient temperatures. The high-risk element of this work is the use of this polymer to template ceramics with nanoscale features and the incorporation of ceramics other than silica, neither of which has been previously demonstrated. We thus will create a synthetic system that mimics the natural system in which a nanoscale templating agent is also a catalyst. The broader impacts of this grant include the creation of new materials that increase the efficiency of catalysis, produce new nanostructured ceramics, and create new structural materials, under environmentally benign conditions. It will also allow for the incorporation of temperature or pH sensitive materials into a porous ceramic matrix. Additionally, this grant will support the PI's involvement in outreach programs that include a Research Experience for Undergraduates (REU) program, Princeton University Materials Academy (PUMA) targeted at underrepresented minority high school students, and the Scientist in Residence program at the Liberty Science Center. This grant also includes research activities for an undergraduate student. Every effort will be made to attract a female or minority student and introduce them to cutting edge research. The intellectual impact of this work is two-fold. Being able to mimic a biological process is one of the best ways to truly understand it. Thus our efforts to reproduce what nature does in a completely synthetic system will lead to a deeper understanding of the natural process. Secondly, in synthesizing a ceramic ordered at the nano-scale, we will increase our understanding of self-assembled amphiphilic systems and how the structures formed can be immobilized and exploited.
美国国家科学基金会-活性纳米结构和纳米系统(ANN) (NSF 06-595)纳米探索性研究(NER)提案号:cbeta -0708054首席研究员:Adamson, douglas联系:普林斯顿大学提案标题:NER;仿生和环保方法催化纳米结构陶瓷的形成数百万年来,大自然已经能够在纳米尺度上制造具有精确细节和控制的陶瓷结构。鲍鱼壳的强度和硅藻中发现的复杂设计是在环境温度下pH值接近中性的条件下产生高度有序陶瓷材料的两个例子。就人造材料而言,不仅缺乏精确的纳米结构,而且形成陶瓷所需的条件涉及极端的pH值和/或高温。这些条件在成本和环境影响方面是有害的,并且可能会妨碍许多有机结构导向剂的使用,以及可能包含在多孔陶瓷基体中的催化剂的掺入。一种能够模仿大自然在温和条件下生产纳米级有序陶瓷的合成系统将在结构材料、催化和过滤技术中得到广泛应用。我们集中精力研究的自然系统是在海绵Tethya aurantia中发现的硅蛋白。这种海绵产生二氧化硅针状体,由占针状体重量75%的二氧化硅外壳和含有蛋白质混合物的核心组成。在核心中发现的蛋白质中,70%是硅蛋白。我们关注该蛋白有两个原因:一是确定了该蛋白的结构,二是阐明了其催化作用的机制。这些研究表明,硅蛋白具有催化四乙氧基硅烷(TEOS)水解的能力。随后水解硅烷的缩合反应迅速,形成二氧化硅。利用这一机制,相对稳定的TEOS可以在室温和接近中性的ph值下快速转化为二氧化硅。我们最近开发了一种合成的非肽基聚合物,它模仿了硅蛋白的催化功能。通过将对蛋白质的催化活性至关重要的官能团的类似物结合到纯合成聚合物中,我们已经证明了非肽嵌段共聚物的催化功能。这项工作已经在一份手稿中被描述,目前正在由美国化学学会杂志审议。我们已经通过许多分析和化学方法证明了我们的聚合物在TEOS缩合方面的催化性质。基于我们成功的催化示范,我们将利用我们的嵌段共聚物催化剂的两亲性,在接近中性的pH值和环境温度下形成纳米结构的陶瓷。这项工作的高风险因素是使用这种聚合物来模板具有纳米级特征的陶瓷,并加入除二氧化硅以外的陶瓷,这两种情况以前都没有被证明过。因此,我们将创建一个模拟自然系统的合成系统,其中纳米级模板剂也是催化剂。这项资助的更广泛影响包括创造新材料,提高催化效率,生产新的纳米结构陶瓷,并在无害环境的条件下创造新的结构材料。它还允许将温度或pH敏感材料掺入多孔陶瓷基体中。此外,这笔拨款将支持PI参与的外展项目,包括本科生研究经验(REU)项目,普林斯顿大学材料学院(PUMA)针对代表性不足的少数民族高中生,以及自由科学中心的科学家驻校项目。这项资助还包括本科生的研究活动。将尽一切努力吸引女性或少数族裔学生,并向他们介绍前沿研究。这项工作对智力的影响是双重的。能够模拟一个生物过程是真正理解它的最好方法之一。因此,我们在一个完全合成的系统中重现自然界的行为的努力将导致对自然过程的更深层次的理解。其次,在纳米级有序陶瓷的合成中,我们将增加对自组装两亲体系的理解,以及如何将形成的结构固定和利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Adamson其他文献
The Metastatic Early Prognostic (MEP) Score: A Novel Scoring Tool For Predicting Early Mortality In Patients With Metastatic Proximal Femoral (HIP) Fractures
- DOI:
10.1016/j.ejso.2019.09.048 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:
- 作者:
Samantha Downie;Florence Lai;Judith Joss;Douglas Adamson;Arpit Jariwala - 通讯作者:
Arpit Jariwala
Douglas Adamson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Adamson', 18)}}的其他基金
Computational and Experimental Design of Associating Bottle Brush Mesostructures
关联瓶刷细观结构的计算和实验设计
- 批准号:
2004072 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Polymeric Composites and Foams Based on Two Dimensional Surfactants
DMREF:合作研究:基于二维表面活性剂的聚合物复合材料和泡沫
- 批准号:
1535412 - 财政年份:2015
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
Adhesion, Friction and Lubrication in Polymeric and Biological Systems
聚合物和生物系统中的粘附、摩擦和润滑
- 批准号:
1409710 - 财政年份:2014
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
Unimolecular Micelles: Design, Synthesis, and Properties
单分子胶束:设计、合成和特性
- 批准号:
1310453 - 财政年份:2013
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Defined Band Gap Materials by Fractionation of Graphene Oxide
EAGER:合作研究:通过氧化石墨烯分馏确定带隙材料
- 批准号:
1111021 - 财政年份:2011
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
Effect of the Electrostatic Interactions on Lubrication in Biological and Polymeric Systems
静电相互作用对生物和聚合物系统润滑的影响
- 批准号:
1004576 - 财政年份:2010
- 资助金额:
$ 8.78万 - 项目类别:
Continuing Grant
NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approach
NER:通过仿生和环保方法催化形成纳米结构陶瓷
- 批准号:
0708054 - 财政年份:2007
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
相似海外基金
Diverse and Selective Catalytic P–C Bond Formation
多样化、选择性催化 P-C 键形成
- 批准号:
2101766 - 财政年份:2021
- 资助金额:
$ 8.78万 - 项目类别:
Standard Grant
Repurposing the novel DATB catalyst for the direct catalytic cross-coupling of carboxylic acids
重新利用新型 DATB 催化剂进行羧酸的直接催化交叉偶联
- 批准号:
20K15292 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of metal cluster formation with cubic based structures and their catalytic reactivities
立方基结构金属簇形成及其催化反应性的发展
- 批准号:
20K05244 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing Electrophilic N-Aryl Catalytic Intermediates for Versatile C-N Bond Formation
利用亲电 N-芳基催化中间体形成多功能 C-N 键
- 批准号:
10225603 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Multi-nuclear operando FlowNMR investigations of catalytic amine formation reactions
催化胺形成反应的多核原位 FlowNMR 研究
- 批准号:
2436725 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Studentship
Harnessing Electrophilic N-Aryl Catalytic Intermediates for Versatile C-N Bond Formation
利用亲电 N-芳基催化中间体形成多功能 C-N 键
- 批准号:
10582239 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Harnessing Electrophilic N-Aryl Catalytic Intermediates for Versatile C-N Bond Formation
利用亲电 N-芳基催化中间体形成多功能 C-N 键
- 批准号:
10728417 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Harnessing Electrophilic N-Aryl Catalytic Intermediates for Versatile C-N Bond Formation
利用亲电 N-芳基催化中间体形成多功能 C-N 键
- 批准号:
10651848 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Harnessing Electrophilic N-Aryl Catalytic Intermediates for Versatile C-N Bond Formation
利用亲电 N-芳基催化中间体形成多功能 C-N 键
- 批准号:
10026372 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Catalytic and biocatalytic C-X bond formation
催化和生物催化 C-X 键形成
- 批准号:
2449034 - 财政年份:2020
- 资助金额:
$ 8.78万 - 项目类别:
Studentship