DMREF: Collaborative Research: Polymeric Composites and Foams Based on Two Dimensional Surfactants

DMREF:合作研究:基于二维表面活性剂的聚合物复合材料和泡沫

基本信息

  • 批准号:
    1535412
  • 负责人:
  • 金额:
    $ 89.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

The challenge of mixing different materials such as plastics, particles, and solvents is one of the major factors hindering future advances in the development of functional materials with new or improved properties. A prominent example of this are graphene-based materials, where graphene's extraordinary combination of high strength, surface area, and conductivity cannot yet be fully utilized as graphene sheets tend to clump together and stack due to a lack of compatibility with other materials. Boron nitride sheets are another example of a promising material limited by the same problem. This project attempts to overcome this obstacle by utilizing the high-energy interface between two immiscible solvents to force stacked graphene sheets to exfoliate and spread. The understanding of governing physical principles of surface activity of graphene and boron nitride produced by this activity will be applied to form emulsions that serve as precursors for the synthesis of foam-like materials reinforced with graphene or boron nitride with optimized mechanical and electrical properties. These reinforced polymeric materials have the potential to be used as strong and lightweight structural materials, electrodes in capacitors and batteries, substrates for flexible electronics, electrically conductive, high surface area catalyst supports, and super-absorbent materials. The project will also be of societal benefit as a result of outreach activities built on the Chemistry Wizards Program designed to target middle school children learning about scientific inquiry. The program aims to spur students from underrepresented populations to pursue post-secondary study and careers in STEM fields.Mixing of chemically and physically different species such as polymer chains, colloidal particles, and solvents is one of the major factors hindering future advances in the development of functional materials. A prominent example of this are graphene based polymeric materials, where graphene's lack of compatibility/solubility is commonly overcome by approaches that compromise its superior electrical, thermal, and mechanical properties and make the composite materials less attractive for future development. This project attempts to overcome this obstacle by utilizing the high-energy interface between two immiscible solvents to force stacked graphene sheets to exfoliate and spread. Lowering the overall free energy of the system drives this rearrangement of sheets. This research is centered on the development of a unifying theoretical, computational and experimental framework to describe the behavior of two-dimensional materials at the liquid/liquid interface. The approach is multi-scale, reaching from the atomic to mesoscopic dimensions. Using graphene and boron nitride as examples, this work will reveal general selection principles for solvent pairs and reaction conditions for which the novel concept of using two-dimensional sheets as surfactants can be realized. The understanding of the governing physical principles of surface activity of graphene and boron nitride will be applied to form emulsions that serve as precursors for the synthesis of foam-like materials reinforced with graphene or boron nitride. The developed theoretical and computational models of these composite foams aim at the design of materials with optimized mechanical and electrical properties. These design tools will be tested and calibrated through experimental studies at nano- and meso-length scales. Ultimately, the work will outline design principles for nanostructured, multifunctional, two-dimensional surfactant-reinforced polymeric composites with tailored properties, enabling material development in a fraction of the time that would be required by a trial and error approach alone. The reinforced polymeric materials have the potential to be used as strong and lightweight structural materials, electrodes in capacitors and batteries, substrates for flexible electronics, electrically conductive, high surface area catalyst supports, and super-absorbent materials. The project will also be of societal benefit as a result of outreach activities built on the Chemistry Wizards Program designed to target middle school children learning about scientific inquiry. The program aims to spur students from underrepresented populations to pursue post-secondary study and careers in STEM fields.
混合塑料、颗粒和溶剂等不同材料的挑战是阻碍未来开发具有新特性或改进特性的功能材料的主要因素之一。一个突出的例子是石墨烯基材料,其中石墨烯的高强度,表面积和导电性的非凡组合还不能被充分利用,因为石墨烯片由于缺乏与其他材料的兼容性而倾向于聚集在一起并堆叠。氮化硼片是受相同问题限制的有前途材料的另一个例子。该项目试图通过利用两种不混溶溶剂之间的高能界面来克服这一障碍,以迫使堆叠的石墨烯片剥离和扩散。对石墨烯和氮化硼表面活性的物理原理的理解将被应用于形成乳液,该乳液用作合成具有优化的机械和电气性能的石墨烯或氮化硼增强的泡沫状材料的前体。这些增强的聚合物材料具有用作坚固且轻质的结构材料、电容器和电池中的电极、柔性电子器件的基底、导电的高表面积催化剂载体和超吸收材料的潜力。该项目还将具有社会效益,因为它是在化学奇才方案基础上开展的外联活动,旨在针对中学生学习科学探究。该计划旨在鼓励来自代表性不足的人群的学生在STEM领域进行中学后学习和职业生涯。化学和物理上不同的物种,如聚合物链,胶体颗粒和溶剂的混合是阻碍功能材料未来发展的主要因素之一。这方面的一个突出例子是石墨烯基聚合物材料,其中石墨烯缺乏相容性/溶解性通常通过损害其上级电、热和机械性能并使复合材料对未来开发不那么有吸引力的方法来克服。该项目试图通过利用两种不混溶溶剂之间的高能界面来克服这一障碍,以迫使堆叠的石墨烯片剥离和扩散。降低系统的总自由能驱动这种片的重新排列。这项研究的重点是发展一个统一的理论,计算和实验框架来描述二维材料在液/液界面的行为。该方法是多尺度的,从原子到介观尺寸。以石墨烯和氮化硼为例,这项工作将揭示溶剂对和反应条件的一般选择原则,可以实现使用二维片作为表面活性剂的新概念。石墨烯和氮化硼的表面活性的支配物理原理的理解将被应用于形成乳液,该乳液用作合成用石墨烯或氮化硼增强的泡沫状材料的前体。这些复合泡沫的理论和计算模型旨在设计具有优化机械和电气性能的材料。这些设计工具将通过纳米和中尺度的实验研究进行测试和校准。最终,这项工作将概述具有定制特性的纳米结构,多功能,二维表面增强聚合物复合材料的设计原则,使材料开发仅需试错方法所需的一小部分时间。增强的聚合物材料具有用作坚固且轻质的结构材料、电容器和电池中的电极、柔性电子器件的基底、导电的高表面积催化剂载体和超吸收材料的潜力。该项目还将具有社会效益,因为它是在化学奇才方案基础上开展的外联活动,旨在针对中学生学习科学探究。该计划旨在刺激来自代表性不足的人口的学生在STEM领域进行中学后学习和职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Adamson其他文献

The Metastatic Early Prognostic (MEP) Score: A Novel Scoring Tool For Predicting Early Mortality In Patients With Metastatic Proximal Femoral (HIP) Fractures
  • DOI:
    10.1016/j.ejso.2019.09.048
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samantha Downie;Florence Lai;Judith Joss;Douglas Adamson;Arpit Jariwala
  • 通讯作者:
    Arpit Jariwala

Douglas Adamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Adamson', 18)}}的其他基金

Computational and Experimental Design of Associating Bottle Brush Mesostructures
关联瓶刷细观结构的计算和实验设计
  • 批准号:
    2004072
  • 财政年份:
    2020
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Adhesion, Friction and Lubrication in Polymeric and Biological Systems
聚合物和生物系统中的粘附、摩擦和润滑
  • 批准号:
    1409710
  • 财政年份:
    2014
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Unimolecular Micelles: Design, Synthesis, and Properties
单分子胶束:设计、合成和特性
  • 批准号:
    1310453
  • 财政年份:
    2013
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Defined Band Gap Materials by Fractionation of Graphene Oxide
EAGER:合作研究:通过氧化石墨烯分馏确定带隙材料
  • 批准号:
    1111021
  • 财政年份:
    2011
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Effect of the Electrostatic Interactions on Lubrication in Biological and Polymeric Systems
静电相互作用对生物和聚合物系统润滑的影响
  • 批准号:
    1004576
  • 财政年份:
    2010
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Continuing Grant
NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approach
NER:通过仿生和环保方法催化形成纳米结构陶瓷
  • 批准号:
    0919033
  • 财政年份:
    2008
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approach
NER:通过仿生和环保方法催化形成纳米结构陶瓷
  • 批准号:
    0708054
  • 财政年份:
    2007
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 89.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了