Benzoic Acid Biosynthesis in Plants
植物中苯甲酸的生物合成
基本信息
- 批准号:0919987
- 负责人:
- 金额:$ 104.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-15). Intellectual Merit: Numerous plant compounds, including natural plant growth regulators, defensive compounds, pathogen-induced phytoalexins, pollinator attractants and flavor compounds, contain benzoyl moieties derived from benzoic acid and play crucial roles in plant survival and reproductive success in natural ecosystems. Despite the simple structure of benzoic acid, widespread distribution and importance for the plant life cycle, the biochemical pathways leading to its formation remain largely unknown. The goal of the proposed research is to discover unknown biochemical pathways leading to benzoic acid biosynthesis, biochemically characterize the enzymes involved and determine their localization in the cell. A unique integrative approach including genetics, metabolomics, functional genomics and metabolic flux analysis will be employed to dissect the pathways to benzoic acid biosynthesis in plants. Petunia flowers, emitting large amounts of benzenoid compounds, represent an ideal model system for the elucidation of the metabolic pathways leading to benzoic acid formation and will be used in this research. The natural emission of methylbenzoate as well as a variety of other volatile benzoic acid derivatives from petunia flowers enables a rapid, quantitative analysis of flux through the benzenoid network. Candidate genes involved in benzoic acid biosynthesis will be silenced using RNAi methodology. The use of a petal-specific promoter will ensure that benzoic acid synthesis will be affected in petals only, thus minimizing unwanted effects on plant viability, growth, and reproduction. Transgenics with altered benzoic acid metabolism will be subjected to metabolic profiling, isotopic labeling experiments and computer-assisted pathway modeling to assess the carbon flow within benzoic acid network and detect flux redistribution during metabolic perturbation. Enzymes encoded by genes whose silencing leads to changes in benzoic acid metabolism will be biochemically characterized. Subcellular localization of these enzymes will be determined experimentally to evaluate the potential role of compartmentalization in regulating flux to benzoic acid. This research will result in the fundamental discovery of genes and enzymes involved in benzoic acid biosynthesis and fill important gaps in our knowledge of benzoic acid metabolism. Obtained results will provide a comprehensive understanding of structural and regulatory properties of the benzoic acid network and lay a foundation for future rational metabolic engineering of plants to improve flavor and aroma quality, boost plant defenses against environmental adversities, increase pollinator attraction and heighten amounts of biologically active compounds. Broader Impacts: This project has a strong multidisciplinary training component for the next generation of plant biochemists. The undergraduate and graduate students, as well as post-doctoral scientists (including women and minorities) will gain experience in plant enzymology, molecular biology, in vivo isotopic labeling, genetics, and integrative modeling. In addition to training students in the laboratory, the PI will organize a Graduate Research Seminar on biochemistry and metabolic engineering of plant secondary metabolism that will bring graduate students and postdocs from the US together with others from around the world and will precede the Gordon Research Conference on Plant Metabolic Engineering in 2011. This seminar will provide young scientists with a deeper understanding of plant metabolism and more actively involve them in science and education, as well as help them build professional relationships with future colleagues from abroad, particularly helpful since plant biochemistry is quite strong in certain foreign countries (e.g., Germany, Japan). Results and approaches used in this research will also be integrated into undergraduate and graduate education at Purdue University by developing course modules focused on plant specialized metabolism. The PI will provide mentorship to trainees for success in their future scientific endeavors.
该奖项是根据2009年美国复苏和再投资法案(公法111-15)资助的。智力优势:许多植物化合物,包括天然植物生长调节剂、防御化合物、病原体诱导的植物抗毒素、传粉者引诱剂和风味化合物,都含有苯甲酸衍生的苯甲酰部分,在自然生态系统中对植物的生存和繁殖成功起着至关重要的作用。尽管苯甲酸结构简单,分布广泛,对植物生命周期具有重要意义,但其形成的生化途径仍不为人所知。本研究的目的是发现导致苯甲酸生物合成的未知生化途径,生物化学表征所涉及的酶并确定其在细胞中的定位。采用独特的综合方法,包括遗传学,代谢组学,功能基因组学和代谢通量分析,来剖析植物中苯甲酸的生物合成途径。矮牵牛花释放出大量的苯类化合物,是阐明导致苯甲酸形成的代谢途径的理想模型系统,将用于本研究。从矮牵牛花中自然释放的苯甲酸甲酯以及各种其他挥发性苯甲酸衍生物使通过苯甲酸网络快速定量分析通量成为可能。参与苯甲酸生物合成的候选基因将使用RNAi方法沉默。使用花瓣特异性启动子将确保苯甲酸的合成只会在花瓣中受到影响,从而最大限度地减少对植物活力、生长和繁殖的有害影响。具有改变苯甲酸代谢的转基因将受到代谢分析,同位素标记实验和计算机辅助途径建模的影响,以评估苯甲酸网络中的碳流,并检测代谢扰动期间的通量重新分配。由基因沉默导致苯甲酸代谢变化的酶编码将被生物化学表征。这些酶的亚细胞定位将被实验确定,以评估区隔化在调节流向苯甲酸的通量中的潜在作用。这项研究将导致对苯甲酸生物合成相关基因和酶的根本性发现,并填补我们对苯甲酸代谢知识的重要空白。研究结果将为全面了解苯甲酸网络的结构和调控特性,为未来合理的植物代谢工程奠定基础,以改善植物的风味和香气品质,增强植物对环境逆境的防御能力,增加传粉者的吸引力和提高生物活性化合物的含量。更广泛的影响:该项目对下一代植物生化学家有很强的多学科培训成分。本科生和研究生以及博士后科学家(包括女性和少数民族)将获得植物酶学,分子生物学,体内同位素标记,遗传学和综合建模方面的经验。除了在实验室培养学生外,PI还将组织一个关于植物次生代谢的生物化学和代谢工程的研究生研究研讨会,将汇集来自美国和世界各地的研究生和博士后,并将在2011年戈登植物代谢工程研究会议之前举行。这次研讨会将使年轻科学家更深入地了解植物代谢,更积极地参与科学和教育,并帮助他们与未来来自国外的同事建立专业关系,特别是在某些国外(如德国,日本)植物生物化学很强。本研究的结果和方法也将通过开发以植物特殊代谢为重点的课程模块,整合到普渡大学的本科和研究生教育中。该项目将为学员提供指导,帮助他们在未来的科学事业中取得成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalia Doudareva其他文献
Natalia Doudareva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natalia Doudareva', 18)}}的其他基金
Collaborative Research: Deciphering the molecular mechanisms of hormone-like function of terpenoids
合作研究:破译萜类激素类激素功能的分子机制
- 批准号:
2139804 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
Standard Grant
Deciphering Molecular Mechanisms Involved in Plant Volatile Emission
破译植物挥发物排放的分子机制
- 批准号:
1655438 - 财政年份:2017
- 资助金额:
$ 104.26万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating the Molecular Architecture and Dynamics of Phenylalanine Biosynthesis in Plants
合作研究:阐明植物中苯丙氨酸生物合成的分子结构和动力学
- 批准号:
1519083 - 财政年份:2015
- 资助金额:
$ 104.26万 - 项目类别:
Standard Grant
Conference: "2011 Plant Metabolic Engineering GRS/GRC"; to be held July 24-29, 2011, in Waterville, New Hampshire.
会议:“2011植物代谢工程GRS/GRC”;
- 批准号:
1064491 - 财政年份:2011
- 资助金额:
$ 104.26万 - 项目类别:
Standard Grant
Deciphering the Complex Metabolic Network in Snapdragon Flowers: An Integrative Approach
破译金鱼草花中复杂的代谢网络:一种综合方法
- 批准号:
0615700 - 财政年份:2006
- 资助金额:
$ 104.26万 - 项目类别:
Continuing Grant
ME: Collaborative Research: Metabolic Engineering of Floral Scent
ME:合作研究:花香代谢工程
- 批准号:
0331333 - 财政年份:2003
- 资助金额:
$ 104.26万 - 项目类别:
Continuing Grant
Regulation of Monoterpene Emission in Snapdragon Flowers
金鱼草花中单萜释放的调控
- 批准号:
0212802 - 财政年份:2003
- 资助金额:
$ 104.26万 - 项目类别:
Continuing Grant
Molecular and Biochemical Determinants of Floral Scent Production in Antirrhinum majus
金鱼草花香产生的分子和生化决定因素
- 批准号:
9904910 - 财政年份:1999
- 资助金额:
$ 104.26万 - 项目类别:
Continuing Grant
相似国自然基金
基于F/IGF1R/PKC ζ 通路研究夏枯草中
Mesonolic acid B抑制RSV感染性肺炎的
作用机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Quinic acid通过抑制肠道菌群代谢产物脱氧胆酸调节巨噬细胞M1向M2极化改善动脉粥样硬化的机制研究
- 批准号:2025JJ80556
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
巨噬细胞来源代谢物suberic acid抑制蜕膜早衰防治早产的作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
色氨酸代谢产物Kynurenic Acid在脓毒症肠损伤中的诊断价值及其机制研究
- 批准号:
- 批准年份:2024
- 资助金额:5.0 万元
- 项目类别:省市级项目
石榴皮活性成分Ellagic acid调控脂肪酸代谢重编程抑制NASH相关肝癌发生的作用机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
具有抗耐药甲氧西林金黄色葡萄球菌活性天然产物quiannulatic acid的分子作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
丹参红花药对活性组分 Salvianolic acid B-Hydrosafflow yellow A 调控Piezo1-YAP/TAZ-JNK 调节动脉粥样硬化炎症反应机制的研究
- 批准号:LQ22H290004
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
DPA(docosapentaenoic acid, 22:5n-3)对溃疡性结肠炎小鼠肠道菌群影响及特异性菌群筛选的研究
- 批准号:LQ22C200008
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
真菌来源抗肿瘤倍半萜terrecyclic acid生物合成及类似物基因组挖掘研究
- 批准号:32000044
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
木霉菌抗真菌物质Harzianic Acid的合成机制及其应用研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Flow, Fatty Acid Biosynthesis, and Hematopoiesis
流动、脂肪酸生物合成和造血
- 批准号:
10868960 - 财政年份:2023
- 资助金额:
$ 104.26万 - 项目类别:
Mechanisms of Polyketide, Amino Acid and Polypeptide Biosynthesis
聚酮化合物、氨基酸和多肽生物合成机制
- 批准号:
RGPIN-2020-03894 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
Discovery Grants Program - Individual
Regulation and Function of Very Long Chain Fatty Acid Biosynthesis in Multiple Myeloma
多发性骨髓瘤中极长链脂肪酸生物合成的调控和功能
- 批准号:
10560857 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
EXPLORING THE BIOSYNTHESIS OF PLANT FATTY ACID-BASED POLYMERS
探索植物脂肪酸基聚合物的生物合成
- 批准号:
RGPIN-2019-05923 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
Discovery Grants Program - Individual
Defining the pathway of Ã-amino acid biosynthesis in the peptide antibiotic edeine
定义肽类抗生素乙二胺四乙酸生物合成的途径
- 批准号:
547411-2020 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Regulation and Function of Very Long Chain Fatty Acid Biosynthesis in Multiple Myeloma
多发性骨髓瘤中极长链脂肪酸生物合成的调控和功能
- 批准号:
10441549 - 财政年份:2022
- 资助金额:
$ 104.26万 - 项目类别:
Elucidation and development of biosynthesis and action mechanism of various novel bacteriocins of lactic acid bacteria
乳酸菌多种新型细菌素的生物合成及作用机制的阐明与发展
- 批准号:
21H02107 - 财政年份:2021
- 资助金额:
$ 104.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EXPLORING THE BIOSYNTHESIS OF PLANT FATTY ACID-BASED POLYMERS
探索植物脂肪酸基聚合物的生物合成
- 批准号:
RGPIN-2019-05923 - 财政年份:2021
- 资助金额:
$ 104.26万 - 项目类别:
Discovery Grants Program - Individual
Defining the pathway of ß-amino acid biosynthesis in the peptide antibiotic edeine
定义肽类抗生素依腺苷中α-氨基酸生物合成的途径
- 批准号:
547411-2020 - 财政年份:2021
- 资助金额:
$ 104.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Phosphatidic Acid Biosynthesis and Signalling in Eukaryotes
真核生物中磷脂酸的生物合成和信号传导
- 批准号:
RGPIN-2016-04596 - 财政年份:2021
- 资助金额:
$ 104.26万 - 项目类别:
Discovery Grants Program - Individual