Collaborative Research: Topological Characterization of DNA Organizations in Bacteriophage Capsids

合作研究:噬菌体衣壳 DNA 组织的拓扑表征

基本信息

  • 批准号:
    0920880
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Macromolecular self-assembly processes are key players in the complex network of interactions that take place in every organism. In viruses proper self-assembly of the viral proteins and of the packaged genome determine the formation of an infective virus. Two critical and interrelated aspects of this pathway that remain mostly unknown in double-stranded DNA (dsDNA) viruses are the packing reaction and the subsequent folding of the DNA genome inside the virus. The aim of this project is to make progress towards a better understanding of such DNA packing and folding under a condensed condition in general. The long-term goal of this project is to provide a detailed quantitative description of the DNA packing and folding processes in dsDNA viruses. There are two specific objectives in the proposal. The first one is to revisit and improve current models of DNA folding in bacteriophages. These models of DNA folding will be tested for knotting using computer simulations. The PIs will determine how closely the knot distributions they generate match the distributions of knots observed experimentally in bacteriophage P4. This information will be used to guide the rejection or modification and improvement of the models. Physical parameters such as the chain flexibility of these improved models will be estimated. Resulting models will be validated by the criterion whether they produce DNA density maps that can be compared to cryoEM data. The second objective is to reconstruct the DNA folding inside bacteriophage P4 using topology and stochastic processes. Data from DNA knots observed experimentally implicates a certain degree of randomness in the DNA packing in bacteriophages. Starting from a completely random model and using the knot distribution from P4 as a guide, the PIs will develop a model that accounts for the knots observed experimentally. This model will be compared against models obtained in the first objective and also against DNA density maps from CryoEM data.Double-stranded DNA (dsDNA) viruses cause a number of human diseases ranging from the common cold to certain cancers. If drugs and vaccines are to be developed to neutralize the effects of these viruses, a better understanding of the self-assembly pathway through which infective viruses are produced and replicated is needed. Results obtained in the laboratory have yielded only partial information. Part of the reason is that because the extreme levels of condensation to which DNA is subjected during packing and replication, the behavior of the DNA is difficult to detect experimentally. Furthermore, though various models of the process of DNA packing have been proposed, none of these adequately accounts for the experimental data that have been obtained. The PIs will employ mathematical modeling, using a tool called knot theory, to develop and test a more refined theory of DNA packing and folding in dsDNA viruses. Computer simulations based on existing models will be tested against experimental data obtained on bacteriophage P4 to determine which features of the models best predict the experimental results. The aim of this work is to generate a revised model which can more fully account for the experimental data. This work will advance knowledge of DNA folding and packing in viruses and will make an important contribution to the study of chromosome structure and dynamics, leading to a better understanding of biological processes of replication, transcription, segregation and repair. Additionally, this work will advance the mathematical and computational theory of random walks under confinement. Since random walk theory is an important and commonly used tool in other scientific studies dealing with random string like objects (such as long polymer chains), this work can potentially benefit other fields of science as well. Research tools developed through the project will be made freely available to the scientific community.
大分子自组装过程是发生在每个生物体中的复杂相互作用网络中的关键参与者。在病毒中,病毒蛋白和包装的基因组的适当自组装决定了感染性病毒的形成。在双链DNA(dsDNA)病毒中,这一途径的两个关键且相互关联的方面仍然是未知的,这两个方面是病毒内DNA基因组的包装反应和随后的折叠。该项目的目的是为了更好地理解这种DNA包装和折叠在一般的压缩条件下取得进展。该项目的长期目标是提供dsDNA病毒中DNA包装和折叠过程的详细定量描述。该提案有两个具体目标。第一个是重新审视和改进噬菌体中DNA折叠的现有模型。这些DNA折叠模型将使用计算机模拟来测试打结。PI将确定它们生成的结分布与在噬菌体P4中实验观察到的结分布的匹配程度。这些信息将用于指导模型的拒绝或修改和改进。将估计这些改进模型的链柔性等物理参数。将通过标准验证所得模型是否产生可与cryoEM数据进行比较的DNA密度图。第二个目标是使用拓扑学和随机过程重建噬菌体P4内的DNA折叠。实验观察到的DNA结的数据暗示了噬菌体中DNA包装的某种程度的随机性。从一个完全随机的模型开始,并使用P4的结分布作为指导,PI将开发一个模型,解释实验观察到的结。该模型将与第一个目标中获得的模型以及CryoEM数据的DNA密度图进行比较。双链DNA(dsDNA)病毒会导致从普通感冒到某些癌症的多种人类疾病。如果要开发药物和疫苗来中和这些病毒的影响,就需要更好地了解感染性病毒产生和复制的自组装途径。实验室的结果只提供了部分信息。部分原因是由于DNA在包装和复制过程中受到的极端浓缩水平,DNA的行为很难通过实验检测。此外,尽管已经提出了DNA包装过程的各种模型,但这些模型都不能充分解释已经获得的实验数据。PI将使用数学建模,使用称为结理论的工具,开发和测试dsDNA病毒中DNA包装和折叠的更精确理论。基于现有模型的计算机模拟将针对噬菌体P4获得的实验数据进行测试,以确定模型的哪些特征最能预测实验结果。这项工作的目的是产生一个修正的模型,可以更充分地解释实验数据。这项工作将推进病毒中DNA折叠和包装的知识,并将对染色体结构和动力学的研究做出重要贡献,从而更好地了解复制,转录,分离和修复的生物过程。此外,这项工作将推进限制下随机游动的数学和计算理论。由于随机游走理论是其他科学研究中处理随机弦状物体(如长聚合物链)的重要和常用工具,这项工作也可能使其他科学领域受益。 通过该项目开发的研究工具将免费提供给科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanan Diao其他文献

Constructions of DNA and polypeptide cages based on plane graphs and odd crossing math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si15.svg" class="math"miπ/mi/math-junctions
基于平面图和奇交叉数学构建 DNA 和多肽笼
  • DOI:
    10.1016/j.amc.2022.127773
  • 发表时间:
    2023-04-15
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Xiao-Sheng Cheng;Qingying Deng;Yuanan Diao
  • 通讯作者:
    Yuanan Diao
Computational investigation of DNA packing in confinement
  • DOI:
    10.1186/1471-2105-13-s12-a22
  • 发表时间:
    2012-07-31
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Uta Ziegler;Yuanan Diao;Claus Ernst;Anthony Montemayor
  • 通讯作者:
    Anthony Montemayor
Ropelengths of closed braids
  • DOI:
    10.1016/j.topol.2006.07.003
  • 发表时间:
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yuanan Diao;Claus Ernst
  • 通讯作者:
    Claus Ernst

Yuanan Diao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanan Diao', 18)}}的其他基金

Collaborative Research: A Study of the Transition of Knot Space from Confinement to Relaxation
协作研究:结空间从约束到松弛的转变研究
  • 批准号:
    1016460
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Space of Large Knots and Links
合作研究:探索大结和链接的空间
  • 批准号:
    0712958
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Computation of Rope Length of Large Thick Knots
大粗结绳索长度的计算
  • 批准号:
    0310562
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
  • 批准号:
    2318170
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了