Collaborative Research: A Study of the Transition of Knot Space from Confinement to Relaxation

协作研究:结空间从约束到松弛的转变研究

基本信息

  • 批准号:
    1016460
  • 负责人:
  • 金额:
    $ 7.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Circular molecules confined to a small volume are often modeled by random polygons confined in a sphere and extracted (that is relaxed) circular molecules are modeled by relaxed random polygons without confinement. The PIs propose to explore the geometric changes that occur during the transition of the polygonal knotspace from confinement to relaxation and to establish correlations between these geometric changes and the topological complexity of the polygons. The results of this research project will provide benchmark data on the relationships between certain knot complexity measures and some geometric measures, where all quantities are measured as averages over families of random polygons before and after they are relaxed. The results can guide the evaluation of experimental data such as the data available in the case of the bacteriophage P4 virus. To reach the goal of the proposed research, several critical objectives must be achieved: a) The development of a fast, reliable, and unbiased algorithm to generate large sets of long equilateral random polygons within a confining volume; b) The development of relaxation schemes for equilateral random polygons and their corresponding algorithms; c) Quantification of the effect of topology on geometric changes of random polygons when transitioning from confinement to relaxation and d) Identification of inferences about topological properties of the random polygons using the average geometric properties of the polygons before and after relaxation. The proposed research will provide a systematic study between the relationships between various geometric measures and topological properties of knots in the average sense when the knots under consideration undergo a transition change from volume confinement to relaxation. The proposed research will reveal potentially important and interesting relationships among these quantities and the role of confinement in these relationships. It is well known that macromolecular self-assembly processes are key players in the complex network of interactions that take place in every organism. One of these self-assembly processes is the packing of the genetic material in the capsids of viruses. Little is know about the details of the packing processes, because in a confined small volume DNA is usually condensed and folds in ways that are difficult to quantify experimentally. DNA molecules that are forcefully removed from bacteriophage P4 capsids often form complicated knots that are a result of the packing process. Thus, the extracted DNA carries important information about how the DNA is packed inside the capsids. The question of how to decipher such information is a main motivation of the proposed research. Circular molecules confined to a small volume are often modeled by random polygons confined in a sphere. On the other hand, extracted circular molecules are usually modeled by relaxed random polygons without confinement. The proposed research will explore the geometric changes that occur during the transition of the polygonal knot space from confinement to relaxation and to establish correlations between these geometric changes and the topological complexity of the polygons. The results will provide some essential benchmark data on the relationships between certain knot complexity measures and some geometric measures, which are important in order for us to fully understand the mechanism of DNA packing in a tight space. The PIs their students (ranging from exceptionally talented high-school students, to undergraduates, graduates, and Ph. D. students) will develop mathematical tools and computational models that will be made freely available to the scientific community and/or interested educators. The results of the work can be used in areas such as biology and physics to check the validity of models of highly condensed DNA or tightly packed polymers.
限制在小体积内的圆形分子通常由限制在球体中的随机多边形建模,并且提取的(即松弛的)圆形分子由没有限制的松弛随机多边形建模。PI建议探索多边形knotspace从限制到松弛的过渡期间发生的几何变化,并建立这些几何变化和多边形的拓扑复杂性之间的相关性。本研究项目的结果将提供基准数据之间的关系,某些结的复杂性措施和一些几何措施,其中所有的数量被测量为家庭的随机多边形之前和之后,他们放松的平均值。结果可以指导实验数据的评估,例如噬菌体P4病毒的可用数据。为了达到本研究的目的,必须实现以下几个关键目标:a)开发一种快速、可靠、无偏的算法,以在有限体积内生成大量的长等边随机多边形:B)开发等边随机多边形的松弛格式及其相应的算法; c)当从限制过渡到松弛时,拓扑对随机多边形的几何变化的影响的量化,以及利用松弛前后随机多边形的平均几何性质,识别关于随机多边形拓扑性质的推论。拟议的研究将提供一个系统的研究之间的关系,各种几何措施和拓扑性质的平均意义上的结时,考虑中的结经历了从体积限制到松弛的过渡变化。拟议的研究将揭示这些量之间潜在的重要和有趣的关系,以及限制在这些关系中的作用。众所周知,大分子自组装过程是每个生物体中发生的复杂相互作用网络中的关键角色。这些自我组装过程之一是将遗传物质包装在病毒衣壳中。关于包装过程的细节知之甚少,因为在有限的小体积中,DNA通常以难以实验量化的方式浓缩和折叠。从噬菌体P4衣壳中被强行移除的DNA分子通常会形成复杂的结,这是包装过程的结果。因此,提取的DNA携带关于DNA如何包装在衣壳内的重要信息。如何破译这些信息的问题是拟议研究的主要动机。被限制在小体积内的圆形分子通常由被限制在球体内的随机多边形来模拟。另一方面,提取的圆形分子通常由松弛的无约束随机多边形建模。拟议的研究将探讨多边形节点空间从限制到松弛的过渡期间发生的几何变化,并建立这些几何变化和多边形的拓扑复杂性之间的相关性。这些结果将提供一些基本的基准数据之间的关系,某些结的复杂性措施和一些几何措施,这是重要的,以便我们充分了解DNA包装在一个紧凑的空间的机制。PI的学生(从特别有才华的高中生,到本科生,研究生和博士生)。学生)将开发数学工具和计算模型,将免费提供给科学界和/或感兴趣的教育工作者。这项工作的结果可以用于生物学和物理学等领域,以检查高度浓缩的DNA或紧密堆积的聚合物模型的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanan Diao其他文献

Constructions of DNA and polypeptide cages based on plane graphs and odd crossing math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si15.svg" class="math"miπ/mi/math-junctions
基于平面图和奇交叉数学构建 DNA 和多肽笼
  • DOI:
    10.1016/j.amc.2022.127773
  • 发表时间:
    2023-04-15
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Xiao-Sheng Cheng;Qingying Deng;Yuanan Diao
  • 通讯作者:
    Yuanan Diao
Computational investigation of DNA packing in confinement
  • DOI:
    10.1186/1471-2105-13-s12-a22
  • 发表时间:
    2012-07-31
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Uta Ziegler;Yuanan Diao;Claus Ernst;Anthony Montemayor
  • 通讯作者:
    Anthony Montemayor
Ropelengths of closed braids
  • DOI:
    10.1016/j.topol.2006.07.003
  • 发表时间:
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yuanan Diao;Claus Ernst
  • 通讯作者:
    Claus Ernst

Yuanan Diao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanan Diao', 18)}}的其他基金

Collaborative Research: Topological Characterization of DNA Organizations in Bacteriophage Capsids
合作研究:噬菌体衣壳 DNA 组织的拓扑表征
  • 批准号:
    0920880
  • 财政年份:
    2009
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Space of Large Knots and Links
合作研究:探索大结和链接的空间
  • 批准号:
    0712958
  • 财政年份:
    2007
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Computation of Rope Length of Large Thick Knots
大粗结绳索长度的计算
  • 批准号:
    0310562
  • 财政年份:
    2003
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346566
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346567
  • 财政年份:
    2024
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Study of Anisotropic Dust Interactions in the PK-4 Experiment
合作研究:PK-4 实验中各向异性尘埃相互作用的研究
  • 批准号:
    2308743
  • 财政年份:
    2023
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Study of Nutron-Rich Nuclei and Neutron Detector Response
合作研究:RUI:富营养核和中子探测器响应的研究
  • 批准号:
    2311125
  • 财政年份:
    2023
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 7.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了