Analysis and Design of Cultured Neuronal Networks for Adaptive and Reconfigurable Control

用于自适应和可重构控制的培养神经元网络的分析和设计

基本信息

  • 批准号:
    0925407
  • 负责人:
  • 金额:
    $ 34.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

Analysis and Design of Cultured Neuronal Networks for Adaptive and Reconfigurable ControlSilvia Ferrari, Craig Henriquez, and Antonius M.J. VanDongenDuke UniversityThe goal of the proposed activity is to develop a methodology for training cultured neuronal networks to solve challenging problems in optimal control and prediction. Engineering systems, such as aerospace and robotic systems, already benefit from feedback controllers and estimators that are man-designed to handle normal operating conditions for which system dynamics are known a priori. However, these designs are not yet capable of handling unforeseen damages and failures involving highly nonlinear and unmodeled dynamics that are unknown a priori. Biological systems are capable of operating optimally, subject to a variety of constraints, and to learn and adapt in real time when new and challenging situations arise. Neurodynamic programming can solve stochastic optimal control and estimation problems in real time, for any form of nonlinear dynamics and performance functions. But, the current formalisms for artificial neural networks and gradient-based learning are far removed from the mechanisms found in biological brains. By integrating theory and experiments, this project will develop neurodynamic programming algorithms that are physiologically plausible and testable on light-sensitive hippocampal and cortical neurons growing in culture. In this experimental setup, the cultured neurons can be trained by light patterns, and it is possible to make defined lesions in the network and evaluate how memory retention is restored, as well as control the connectivity between isolated networks of neurons. By overcoming the complexities that are known to limit such system-level studies in in vitro or in vivo experiments on animals, it is expected that we will uncover the abilities of neuronal networks to store and retrieve sensory information, as well as understand the effect that reward pathways have on this process. The broader impact of this project is to reverse-engineer dopamine and cortical neuronal cultures on a chip, and to help uncover the mechanisms underlying sensorimotor learning in the mammalian brain
自适应和可重构控制的培养神经元网络的分析和设计Silvia Ferrari,克雷格Henriquez和Antonius M.J. VanDongen杜克大学拟议活动的目标是开发一种训练培养神经元网络的方法,以解决最优控制和预测中的挑战性问题。 工程系统,如航空航天和机器人系统,已经受益于反馈控制器和估计器,这些控制器和估计器是人为设计的,用于处理系统动态先验已知的正常操作条件。 然而,这些设计还不能处理不可预见的损坏和故障,涉及高度非线性和未建模的动态是未知的先验。 生物系统能够在各种约束条件下以最佳方式运行,并在新的和具有挑战性的情况出现时能够真实的及时学习和适应。 神经动力规划可以真实的求解任意形式的非线性动力学和性能函数的随机最优控制和估计问题。 但是,目前人工神经网络和基于梯度的学习的形式主义与生物大脑中发现的机制相去甚远。 通过整合理论和实验,该项目将开发神经动力学编程算法,这些算法在生理上是合理的,并且可以在培养中生长的光敏海马和皮层神经元上进行测试。 在这个实验设置中,培养的神经元可以通过光模式进行训练,并且可以在网络中进行定义的损伤,并评估如何恢复记忆保留,以及控制孤立的神经元网络之间的连接。 通过克服已知限制在体外或动物体内实验中进行此类系统水平研究的复杂性,预计我们将揭示神经元网络存储和检索感觉信息的能力,以及了解奖励途径对这一过程的影响。 该项目更广泛的影响是在芯片上反向工程多巴胺和皮层神经元培养,并帮助揭示哺乳动物大脑中感觉运动学习的潜在机制

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silvia Ferrari其他文献

Satisficing in split-second decision making is characterized by strategic cue discounting.
满足瞬间决策的特点是战略线索折扣。
"Historia magistra vitae": How is the psychiatric rehabilitation technician trained in psychiatry's history?
《Historia Magistra vitae》:精神科康复技术人员是如何接受精神病学历史培训的?
  • DOI:
    10.3280/rsf2023-003004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giulia Ferrazzi;S. Catellani;Silvia Ferrari;M. Marchi;L. Pingani
  • 通讯作者:
    L. Pingani
CT-526 Updated Results From a Rapcabtagene Autoleucel (YTB323) Phase I Study Demonstrate Durable Efficacy and a Manageable Safety Profile in Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma (R/R DLBCL)
  • DOI:
    10.1016/s2152-2650(23)01520-3
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nirav N. Shah;Ian Flinn;Mi Kwon;Ulrich Jäger;Javier Briones;Emmanuel Bachy;Didier Blaise;Nicolas Boissel;Koji Kato;Peter A. Riedell;Matthew J. Frigault;Leyla O. Shune;Takanori Teshima;Fabio Ciceri;Shaun A. Fleming;Silvia Ferrari;David Pearson;Jeanne Whalen;Aiesha Zia;Jaclyn Davis
  • 通讯作者:
    Jaclyn Davis
Are visual analogue scales valid instruments to measure psychological pain in psychiatric patients?
视觉模拟量表是衡量精神病患者心理痛苦的有效工具吗?
  • DOI:
    10.1016/j.jad.2024.05.017
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    A. Alacreu;M. Innamorati;P. Courtet;D. Erbuto;Mario Luciano;G. Sampogna;G. Abbate;Stefano Barlati;C. Carmassi;G. Castellini;P. De Fazio;Giorgio Di Lorenzo;M. Di Nicola;Silvia Ferrari;Arianna Goracci;Carla Gramaglia;G. Martinotti;M. Nanni;Massimo Pasquini;Federica Pinna;Nicola Poloni;G. Serafini;M.S. Signorelli;A. Tortorella;A. Ventriglio;U. Volpe;A. Fiorillo;M. Pompili
  • 通讯作者:
    M. Pompili
Pathogenetic role of Factor VII deficiency and thrombosis in cross-reactive material positive patients.
交叉反应物质阳性患者中因子 VII 缺乏和血栓形成的致病作用。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Girolami;L. Sambado;E. Bonamigo;Silvia Ferrari;A. Lombardi
  • 通讯作者:
    A. Lombardi

Silvia Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silvia Ferrari', 18)}}的其他基金

I-Corps: Flow-aided aerial vehicle navigation and control
I-Corps:流动辅助飞行器导航和控制
  • 批准号:
    2132243
  • 财政年份:
    2021
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
I-Corps: Real-time intelligent sensor path planning based on information value estimation
I-Corps:基于信息价值估计的实时智能传感器路径规划
  • 批准号:
    2038358
  • 财政年份:
    2020
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
I-Corps: Control for Visual Scene Perception
I-Corps:视觉场景感知控制
  • 批准号:
    1934303
  • 财政年份:
    2019
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
I-Corps: Neuromorphic Target Tracking and Control for Insect-Scale Aerial Vehicles
I-Corps:昆虫级飞行器的神经形态目标跟踪和控制
  • 批准号:
    1838470
  • 财政年份:
    2018
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1556900
  • 财政年份:
    2015
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1545574
  • 财政年份:
    2015
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1408022
  • 财政年份:
    2014
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1227877
  • 财政年份:
    2012
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Adaptive Dynamic Programming Approach to the Coordination of Heterogeneous Robotic Sensors Networks
协作研究:协调异构机器人传感器网络的自适应动态规划方法
  • 批准号:
    1028506
  • 财政年份:
    2010
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Continuing Grant
A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical Systems
在神经网络建模和动力系统控制中保留先验知识的约束优化方法
  • 批准号:
    0823945
  • 财政年份:
    2008
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Studentship
High Performance Reefable Wingsail Rig Design and Pre-deployment Trial
高性能可折叠翼帆装置设计和预部署试验
  • 批准号:
    10092779
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Collaborative R&D
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    EU-Funded
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
  • 批准号:
    AH/Z505559/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Research Grant
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
  • 批准号:
    DP240102559
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Discovery Projects
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 34.98万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了