A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical Systems
在神经网络建模和动力系统控制中保留先验知识的约束优化方法
基本信息
- 批准号:0823945
- 负责人:
- 金额:$ 32.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: ECCS-0823945Proposal Title: A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical SystemsPI Name: Ferrari, SilviaPI Institution: Duke UniversityThe objective of this research is to develop and implement a unified theory for memory and forgetting in artificial neural networks. The novel learning algorithms developed through this research will eliminate interference and catastrophic interference in nonlinear and fully-connected neural networks, thereby enhancing their applicability in a number of engineering applications. The approach is to formulate learning through a constrained backpropagation approach that optimizes the neural network performance subject to long-term memory constraints, which may be deteriorated over time via a penalty function or Lagrange multipliers.Intellectual MeritThe intellectual merit of the proposed research is the development of a novel constrained backpropagation approach that combines constrained optimization theory and classical backpropagation. The newly developed adjoined error gradient and algebraic training formalisms together allow to formulate constrained backpropagation efficiently and effectively, while also exploiting existing artificial neural networks algorithms, such as Levenberg-Marquardt and resilient backpropagation.Broader ImpactThe proposed activity will enhance the applicability and effectiveness of on-line adaptive neural networks in a broad spectrum of complex science and engineering problems, namely, function approximation, solution of differential equations, system identification, and control. The constrained-backpropagation theory and algorithms will be implemented on data-assimilation problems, which will benefit society by producing timely predictions about environmental change and dispersion of urban pollutants, and on adaptive dual control, which will produce flight control systems that are fault and damage-tolerant, and make piloted airplanes safer and easier to fly. Also, they will be demonstrated through benchmark problems in robotics and mine hunting using Graphical User Interfaces, for educational and dissemination purposes. This approach has already been proven successful at creating positive synergies and collaborations between Duke University and K-12 students from the Chapel Hill (NC) public schools, as well as small local industries.
提案编号:ECCS-0823945提案标题:在动态系统的神经网络建模和控制中保留先验知识的约束优化方法PI姓名: Ferrari,SilviaPI机构:杜克大学本研究的目的是发展和实现一个统一的理论,记忆和遗忘的人工神经网络。 通过这项研究开发的新型学习算法将消除非线性和全连接神经网络中的干扰和灾难性干扰,从而增强其在许多工程应用中的适用性。 该方法是制定学习通过约束反向传播的方法,优化神经网络的性能受到长期的记忆约束,这可能会随着时间的推移,通过一个惩罚函数或拉格朗日multiplers.Intellectual MeritThe智力的优点,提出的研究是一种新的约束反向传播的方法,结合约束优化理论和经典的反向传播的发展。 新开发的邻接误差梯度和代数训练形式主义一起允许制定约束反向传播高效和有效地,同时也利用现有的人工神经网络算法,如Levenberg-Marquardt和弹性反向传播。更广泛的影响拟议的活动将提高在线自适应神经网络在广泛的复杂科学和工程问题,即,函数逼近、微分方程解、系统辨识和控制。 约束反向传播理论和算法将用于数据同化问题,这将通过及时预测环境变化和城市污染物的扩散而造福社会,并用于自适应双重控制,这将产生容错和损伤容限的飞行控制系统,使有人驾驶的飞机更安全,更容易飞行。 此外,为了教育和传播目的,还将利用图形用户界面,通过机器人技术和扫雷方面的基准问题来演示。 事实证明,这种方法在杜克大学与查佩尔山(NC)公立学校的K-12学生以及当地小型企业之间创造了积极的协同效应和合作关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia Ferrari其他文献
Satisficing in split-second decision making is characterized by strategic cue discounting.
满足瞬间决策的特点是战略线索折扣。
- DOI:
10.1037/xlm0000284 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hanna Oh;J. Beck;Pingping Zhu;M. Sommer;Silvia Ferrari;T. Egner - 通讯作者:
T. Egner
CT-526 Updated Results From a Rapcabtagene Autoleucel (YTB323) Phase I Study Demonstrate Durable Efficacy and a Manageable Safety Profile in Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma (R/R DLBCL)
- DOI:
10.1016/s2152-2650(23)01520-3 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Nirav N. Shah;Ian Flinn;Mi Kwon;Ulrich Jäger;Javier Briones;Emmanuel Bachy;Didier Blaise;Nicolas Boissel;Koji Kato;Peter A. Riedell;Matthew J. Frigault;Leyla O. Shune;Takanori Teshima;Fabio Ciceri;Shaun A. Fleming;Silvia Ferrari;David Pearson;Jeanne Whalen;Aiesha Zia;Jaclyn Davis - 通讯作者:
Jaclyn Davis
"Historia magistra vitae": How is the psychiatric rehabilitation technician trained in psychiatry's history?
《Historia Magistra vitae》:精神科康复技术人员是如何接受精神病学历史培训的?
- DOI:
10.3280/rsf2023-003004 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Giulia Ferrazzi;S. Catellani;Silvia Ferrari;M. Marchi;L. Pingani - 通讯作者:
L. Pingani
Are visual analogue scales valid instruments to measure psychological pain in psychiatric patients?
视觉模拟量表是衡量精神病患者心理痛苦的有效工具吗?
- DOI:
10.1016/j.jad.2024.05.017 - 发表时间:
2024 - 期刊:
- 影响因子:6.6
- 作者:
A. Alacreu;M. Innamorati;P. Courtet;D. Erbuto;Mario Luciano;G. Sampogna;G. Abbate;Stefano Barlati;C. Carmassi;G. Castellini;P. De Fazio;Giorgio Di Lorenzo;M. Di Nicola;Silvia Ferrari;Arianna Goracci;Carla Gramaglia;G. Martinotti;M. Nanni;Massimo Pasquini;Federica Pinna;Nicola Poloni;G. Serafini;M.S. Signorelli;A. Tortorella;A. Ventriglio;U. Volpe;A. Fiorillo;M. Pompili - 通讯作者:
M. Pompili
Pathogenetic role of Factor VII deficiency and thrombosis in cross-reactive material positive patients.
交叉反应物质阳性患者中因子 VII 缺乏和血栓形成的致病作用。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Antonio Girolami;L. Sambado;E. Bonamigo;Silvia Ferrari;A. Lombardi - 通讯作者:
A. Lombardi
Silvia Ferrari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia Ferrari', 18)}}的其他基金
I-Corps: Flow-aided aerial vehicle navigation and control
I-Corps:流动辅助飞行器导航和控制
- 批准号:
2132243 - 财政年份:2021
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
I-Corps: Real-time intelligent sensor path planning based on information value estimation
I-Corps:基于信息价值估计的实时智能传感器路径规划
- 批准号:
2038358 - 财政年份:2020
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
I-Corps: Control for Visual Scene Perception
I-Corps:视觉场景感知控制
- 批准号:
1934303 - 财政年份:2019
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
I-Corps: Neuromorphic Target Tracking and Control for Insect-Scale Aerial Vehicles
I-Corps:昆虫级飞行器的神经形态目标跟踪和控制
- 批准号:
1838470 - 财政年份:2018
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
- 批准号:
1556900 - 财政年份:2015
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
- 批准号:
1545574 - 财政年份:2015
- 资助金额:
$ 32.21万 - 项目类别:
Continuing Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
- 批准号:
1408022 - 财政年份:2014
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
- 批准号:
1227877 - 财政年份:2012
- 资助金额:
$ 32.21万 - 项目类别:
Continuing Grant
Collaborative Research: An Adaptive Dynamic Programming Approach to the Coordination of Heterogeneous Robotic Sensors Networks
协作研究:协调异构机器人传感器网络的自适应动态规划方法
- 批准号:
1028506 - 财政年份:2010
- 资助金额:
$ 32.21万 - 项目类别:
Continuing Grant
Analysis and Design of Cultured Neuronal Networks for Adaptive and Reconfigurable Control
用于自适应和可重构控制的培养神经元网络的分析和设计
- 批准号:
0925407 - 财政年份:2009
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Bilevel Optimization Approach to Integrating Personalized Treatment with Healthcare Resource Planning
将个性化治疗与医疗资源规划相结合的双层优化方法
- 批准号:
2321399 - 财政年份:2023
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Towards High-Performance and Carbon-Negative Civil Structures with Renewable Bio-Based Materials: A Topology Optimization Approach
利用可再生生物基材料实现高性能和负碳土木结构:拓扑优化方法
- 批准号:
2245251 - 财政年份:2023
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Mathematical Optimization Approach for Resilient Nationwide Transportation Network Planning
弹性全国交通网络规划的数学优化方法
- 批准号:
22H00222 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
An LCMS-guided bioanalytical approach for rational natural product library design and optimization
LCMS 引导的生物分析方法,用于合理的天然产物库设计和优化
- 批准号:
10418425 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Improving Healthcare Systems' Performance during Mass Casualty Incidents using a Simulation, Optimization, and Machine Learning approach
使用模拟、优化和机器学习方法提高大规模伤亡事件期间医疗保健系统的性能
- 批准号:
2750907 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Studentship
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
RGPIN-2021-03495 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Discovery Grants Program - Individual
An LCMS-guided bioanalytical approach for rational natural product library design and optimization
LCMS 引导的生物分析方法,用于合理的天然产物库设计和优化
- 批准号:
10697396 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
CRII: CNS: Towards Spectrum and Energy Efficient Large-scale IoT Communications: A Cross-layer Optimization Approach
CRII:CNS:迈向频谱和节能的大规模物联网通信:跨层优化方法
- 批准号:
2153428 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Standard Grant
Machine Learning Approach to Supply Chain Optimization
供应链优化的机器学习方法
- 批准号:
572600-2022 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
University Undergraduate Student Research Awards
Engineering design optimization of a lower limb prosthesis for female single-limb transtibial amputees using a computational modelling and user-centered design approach.
使用计算建模和以用户为中心的设计方法对女性单肢跨胫截肢者的下肢假肢进行工程设计优化。
- 批准号:
569642-2022 - 财政年份:2022
- 资助金额:
$ 32.21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral