Scalable Bilinear Algorithms and Architectures for Convolutions and Transforms
用于卷积和变换的可扩展双线性算法和架构
基本信息
- 批准号:0925890
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The objective of this research is to develop and implement scalable bilinear algorithms for convolutions and transforms over the real field and finite fields. The approach is to first obtain bilinear algorithms by identifying cyclic structures and combining relevant cyclic convolution algorithms algebraically, and then reduce their additive complexities significantly.The intellectual merit of this project lies in scalable bilinear algorithms for convolutions and transforms, which are suitable for efficient hardware implementations, and a novel common sub-expression elimination algorithm that greatly reduces the additive complexities of a wide range of bilinear algorithms. The research is organized under four themes: (1) scalable bilinear algorithms for convolutions and transforms over the real field; (2) scalable bilinear algorithms for convolutions and discrete Fourier transform over finite fields; (3) reduction of additive complexities; and (4) hardware implementation under the algorithm/architecture co-design methodology.With respect to broader impacts, scalable bilinear algorithms have significant potential for impact on a wide range of applications, such as signal processing, telecommunications, and multimedia systems. The project integrates research with education and outreach activities to educate a wide spectrum of students in the interdisciplinary area of very large-scale integrated (VLSI) signal processing, which links integrated circuit hardware design with signal processing. The project also provides research opportunities and hands-on system design experience to graduate and undergraduate students and motivates local high school students to pursue higher education in science and engineering.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。本研究的目标是开发和实现可扩展的双线性算法,用于真实的域和有限域上的卷积和变换。 该方法首先通过识别循环结构和代数地组合相关的循环卷积算法来获得双线性算法,然后显著地降低它们的加性复杂度。该项目的智力价值在于用于卷积和变换的可扩展的双线性算法,其适合于高效的硬件实现,以及一种新颖的公共子表达式消除算法,该算法大大降低了大范围双线性算法的加法复杂度。 本论文的研究主要围绕四个方面展开:(1)真实的域上卷积和变换的可扩展双线性算法,(2)有限域上卷积和离散傅立叶变换的可扩展双线性算法,(3)加法复杂度的降低,(4)加法复杂度的降低,(5)加法复杂度的降低,(6)加法复杂度的降低,(7)加法复杂度的降低,(8)加法复杂度的降低,(9)加法复杂度的降低,(9)加法复杂度的降低,(10)加法复杂度的降低,(10)加法复杂度的降低,(11)加法复杂度的降低,(11)加法复杂度的降低,(12)加法复杂度的降低,(13)加法复杂度的降低,(14)加法复杂度的降低,(15)加法复杂度的降低,(16)加法复杂度的降低,(17)加法复杂度的降低,(18)加法复杂度的降低,(19)加法复杂度的以及(4)算法/架构协同设计方法下的硬件实现。可缩放的双线性算法在诸如信号处理、电信和多媒体系统的广泛应用中具有显著的潜在影响。 该项目将研究与教育和推广活动相结合,以教育大规模集成(VLSI)信号处理跨学科领域的广泛学生,该领域将集成电路硬件设计与信号处理联系起来。 该项目还为研究生和本科生提供研究机会和实践系统设计经验,并激励当地高中生接受科学和工程方面的高等教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiyuan Yan其他文献
Avalon: Building an Operating System for Robotcenter
Avalon:为 Robotcenter 构建操作系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yuan Xu;Zhiyuan Yan;Sa Wang;Cheng Yang;Qingsai Xiao;Yungang Bao - 通讯作者:
Yungang Bao
Range Sidelobe Suppression Approach for SAR Images Using Chaotic FM Signals
使用混沌调频信号的 SAR 图像距离旁瓣抑制方法
- DOI:
10.1109/tgrs.2021.3137903 - 发表时间:
2021 - 期刊:
- 影响因子:8.2
- 作者:
Youming Wu;Kun Fu;W. Diao;Zhiyuan Yan;Peijin Wang;Xian Sun - 通讯作者:
Xian Sun
Reduced-Complexity Cyclotomic FFTs
降低复杂度的分圆 FFT
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ning Chen;Zhiyuan Yan - 通讯作者:
Zhiyuan Yan
Prime factor cyclotomic Fourier transforms with reduced complexity over finite fields
在有限域上降低复杂度的素因子分圆傅立叶变换
- DOI:
10.1109/sips.2010.5624887 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Xuebin Wu;Zhiyuan Yan;Ning Chen;M. D. Wagh - 通讯作者:
M. D. Wagh
High-speed systolic architectures for finite field inversion
用于有限场反演的高速脉动架构
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Zhiyuan Yan;D. Sarwate;Zhongzhi Liu - 通讯作者:
Zhongzhi Liu
Zhiyuan Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiyuan Yan', 18)}}的其他基金
High Performance Polar Decoders: Algorithm and Hardware Implementation
高性能 Polar 解码器:算法和硬件实现
- 批准号:
1509674 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: An Integrated Framework of Algebraic Universal Error Control for Network Coding: Algorithms, Complexities, and Hardware Implementations
职业:网络编码代数通用错误控制的集成框架:算法、复杂性和硬件实现
- 批准号:
1055877 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Bilinear Inference Based on Belief Propagation for Non-Orthogonal Multiple Access with Massive IoT Devices
基于置信传播的海量物联网设备非正交多址双线性推理
- 批准号:
23K13335 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fundamental mechanisms and obstacles in the bilinear control of Schrödinger equations
薛定谔方程双线性控制的基本机制和障碍
- 批准号:
RGPIN-2016-05741 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bilinear Estimates in Analysis and Partial Differential Equations
分析和偏微分方程中的双线性估计
- 批准号:
2154113 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Fundamental mechanisms and obstacles in the bilinear control of Schrödinger equations
薛定谔方程双线性控制的基本机制和障碍
- 批准号:
RGPIN-2016-05741 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Design of a bilinear spring for vibration analysis
用于振动分析的双线性弹簧设计
- 批准号:
551731-2020 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Fundamental mechanisms and obstacles in the bilinear control of Schrödinger equations
薛定谔方程双线性控制的基本机制和障碍
- 批准号:
RGPIN-2016-05741 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Designing lattice materials with bilinear elasticity
设计具有双线性弹性的晶格材料
- 批准号:
541804-2019 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards