BRIGE: Optimization-Based Prediction of Seated Posture in Pregnant Women

BRIGE:基于优化的孕妇坐姿预测

基本信息

  • 批准号:
    0926549
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

0926549YangProject Summary: This project will investigate the effects of pregnant women's altered shape and size on their seated posture. The effects will be simulated by developing a digital human environment. The foundation of this human simulation environment will be an induced optimization-based posture prediction model. A suite of simple web-based models will be developed and combined with experimental laboratory exercises for use in a freshman course designed for the Women's Studies minor at Texas Tech University, with the goal of attracting women students to the engineering disciplines. The PI will collaborate with the Cross Cultural Academic Advancement Center, Texas Tech University to develop a summer workshop at the PI's lab (Human-Centric Design Research Laboratory) for the Native American Summer Bridge Institute (NASBI). The week-long summer workshop proposed in this education module will focus on computer-based digital human modeling and simulation from an engineering point of view in order to attract Native Americans to pursue degrees in engineering. Intellectual Merit: The proposed research seeks to provide a scientific foundation for investigating the seated posture of pregnant women and to develop a unique optimization-based model for the prediction of seated posture in pregnant women. Digital human modeling and simulation has revolutionized the way new products are designed, built, operated, and maintained. Expected benefits include improved quality and the reduction of product development time and costs. During pregnancy, a woman's body undergoes significant physical changes that can impact her safety in vehicles and workstations. There are a number of modeling and simulation packages including JACK, RAMSIS, SAFEWORK, ANYBODY, etc. with posture prediction capabilities. However, none of them has incorporated the needs of pregnant women. Moreover, currently available packages are either based on empirical data or model few degrees of freedom (DOF). This project will develop a new optimization-based model that yields significant advantages: 1) no prerecorded data is required; 2) the human model can react to infinitely many scenarios; 3) a computationally efficient approach permits real-time operation; 4) there is no penalty to the speed of operation when a large number of DOFs are used; and 5) added functionality, such as obstacle avoidance, manipulation of multiple end-effectors (feet, hands, and head), or stipulation of orientation for various body segments, is easily achieved by incorporating additional constraints in the optimization problem. The research addresses the following questions: 1) how do changes associated with pregnancy affect women's seated posture; 2) what are the low-back biomechanical loads for pregnant women sitting at a workstation; 3) what are the risks related to layout design for pregnant occupants; and 4) what design improvements can be made to permit comfortable posture? Broader Impacts: The proposed work has ramifications in a potentially broad range of areas, such as (i) modeling posture in the morbidly obese; (ii) designing automobile/airplane interiors to better accommodate the needs of pregnant women; and (iii) modifying regular workstation design for pregnant women. This project will create ways to make science and engineering more inclusive to underrepresented groups through the development of an innovative course and outreach program. To achieve this goal, a family of simple web-based models will augment students' classroom instruction by way of experiment-based laboratory exercises. These models will be intentionally designed for students in the Women's Studies minor at Texas Tech University in order to attract women to careers in engineering. A summer workshop will be developed in the PI's lab for the Native American Summer Bridge Institute at Texas Tech University targeting Native American high school students. Texas Tech University began its annual NASBI in 2008. The program invites about 40 Native American high school students and their parents to participate in activities that introduce them to academic courses, campus activities, cultural exploration, and college life. The proposed workshop will demonstrate advances and advantages of digital human modeling and simulation. Active recruitment to engineering studies will occur during this event with full participation of the research group.
0926549杨项目概要:本项目将调查孕妇的体形和体型改变对她们坐姿的影响。这些效果将通过开发数字人类环境来模拟。该人体模拟环境的基础将是基于诱导优化的姿势预测模型。将开发一套简单的基于网络的模型,并将其与实验室练习相结合,用于为德克萨斯理工大学妇女研究辅修专业设计的新生课程,目标是吸引女学生学习工程学科。PI将与德克萨斯理工大学跨文化学术促进中心合作,在PI的实验室(以人为本的设计研究实验室)为美国原住民夏桥研究所(NASBI)举办夏季研讨会。在这个教育模块中提出的为期一周的夏季研讨会将侧重于基于计算机的数字人类建模和模拟从工程的角度来看,以吸引美洲原住民攻读工程学位。智力优势:该研究旨在为调查孕妇的坐姿提供科学依据,并开发一种独特的基于优化的模型来预测孕妇的坐姿。数字人体建模和仿真彻底改变了新产品的设计、构建、操作和维护方式。预期的好处包括提高质量和减少产品开发时间和成本。在怀孕期间,女性的身体会发生重大的身体变化,这可能会影响她在车辆和工作场所的安全。有许多建模和仿真软件包,包括JACK,RAMSIS,SAFEWORK,ANYBODY等,具有姿态预测功能。但是,这些方案都没有考虑到孕妇的需要。此外,目前可用的包是基于经验数据或模型的自由度(DOF)。该项目将开发一种新的基于优化的模型,该模型具有显著的优点:1)不需要预先记录的数据; 2)人体模型可以对无限多个场景做出反应; 3)计算效率高的方法允许实时操作; 4)当使用大量自由度时,不会对操作速度造成影响;以及5)通过在优化问题中结合附加的约束,可以容易地实现附加的功能,例如障碍物回避、多个末端执行器(脚、手和头)的操纵、或各种身体部分的定向的规定。该研究解决了以下问题:1)与怀孕相关的变化如何影响女性的坐姿; 2)坐在工作站的孕妇的下背部生物力学负荷是什么; 3)与怀孕乘客的布局设计相关的风险是什么;以及4)可以进行哪些设计改进以允许舒适的姿势?更广泛的影响:拟议的工作在一个潜在的广泛的领域,如(i)在病态肥胖的姿势建模;(ii)设计汽车/飞机内饰,以更好地适应孕妇的需求;和(iii)修改定期工作站设计孕妇。该项目将通过开发创新课程和推广计划,使科学和工程对代表性不足的群体更具包容性。为了实现这一目标,一系列简单的基于网络的模型将通过基于实验的实验室练习来增强学生的课堂教学。这些模型将专门为德克萨斯理工大学妇女研究未成年人的学生设计,以吸引女性从事工程职业。一个夏季讲习班将在PI的实验室开发的美洲土著夏桥研究所在得克萨斯理工大学针对美洲土著高中学生。德克萨斯理工大学于2008年开始举办年度NASBI。该计划邀请大约40名美国原住民高中学生和他们的父母参加活动,向他们介绍学术课程,校园活动,文化探索和大学生活。拟议的研讨会将展示数字人体建模和仿真的进步和优势。工程研究的积极招募将在研究小组的充分参与下在本次活动期间进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Yang其他文献

NSTX-U theory, modeling and analysis results
NSTX-U理论、建模和分析结果
  • DOI:
    10.1088/1741-4326/ac5448
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    W. Guttenfelder;D. Battaglia;E. Belova;N. Bertelli;M. Boyer;Choong;A. Diallo;V. Duarte;F. Ebrahimi;E. Emdee;N. Ferraro;E. Fredrickson;N. Gorelenkov;W. Heidbrink;Z. Ilhan;S. Kaye;Eun‐Hwa Kim;A. Kleiner;F. Laggner;M. Lampert;J. Lestz;Chang Liu;Deyong Liu;T. Looby;N. Mandell;R. Maingi;J. Myra;S. Munaretto;M. Podestà;T. Rafiq;R. Raman;M. Reinke;Y. Ren;J. Ruiz Ruiz;F. Scotti;S. Shiraiwa;V. Soukhanovskii;P. Vail;Zhirui Wang;W. Wehner;A. White;R. White;B. Woods;James Yang;S. Zweben;S. Banerjee;R. Barchfeld;R. Bell;J. Berkery;Amit Bhattacharjee;A. Bierwage;G. Canal;Xiang Chen;C. Clauser;N. Crocker;C. Domier;T. Evans;M. Francisquez;K. Gan;S. Gerhardt;R. Goldston;T. Gray;A. Hakim;G. Hammett;S. Jardin;R. Kaita;B. Koel;E. Kolemen;S. Ku;S. Kubota;B. LeBlanc;F. Levinton;J. Lore;N. Luhmann;R. Lunsford;R. Maqueda;J. Menard;J. Nichols;M. Ono;Jongkyu Park;F. Poli;T. Rhodes;J. Riquezes;D. Russell;S. Sabbagh;E. Schuster;David R. Smith;D. Stotler;B. Stratton;K. Tritz;Weixing Wang;B. Wirth
  • 通讯作者:
    B. Wirth
A Collision Avoidance Algorithm for Human Motion Prediction Based on Perceived Risk of Collision: Part 2-Application
基于感知碰撞风险的人体运动预测防撞算法:第 2 部分 - 应用
Hydrodynamic Features of an Undular Bore Traveling on a 1:20 Sloping Beach
1:20坡度海滩上波状钻孔的水动力特征
  • DOI:
    10.3390/w11081556
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chang Lin;Wei;Ming;James Yang;R. Raikar;Juan
  • 通讯作者:
    Juan
Estimation of Left Ventricular Mechanical Activation Times from Motion-Corrected Cardiac 4DCT Images
根据运动校正心脏 4DCT 图像估计左心室机械激活时间
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Manohar;James Yang;J. Pack;E. McVeigh
  • 通讯作者:
    E. McVeigh
Non-invasive identification of tumor cells using near infrared composition imaging system
利用近红外组合成像系统无创识别肿瘤细胞
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayashi Hidetoshi;Chiba Yasutaka;Sakai Kazuko;Fujita Tomonobu;Yoshioka Hiroshige;Sakai Daisuke;Kitagawa Chiyoe;Naito Tateaki;Takeda Koji;Okamoto Isamu;Mitsudomi Tetsuya;Kawakami Yutaka;Nishio Kazuto;Nakamura Shinichiro;Yamamoto Nobuyuki;Nakagawa Kazuhiko;Nokihara H;Naito T;Naito T;Sato K;Tanaka A;Hayata A;Kikuchi T;Schuler M;Sekine I;Azuma K;Nosaki K;Goto K;Yoh K;Atagi S;Hiroaki Akamatsu;Makoto Nishio;James Yang;Takehito Shukuya;Murakami Hiroyasu;Akamatsu H;Kambayashi S;Koh Y
  • 通讯作者:
    Koh Y

James Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Yang', 18)}}的其他基金

Collaborative Research: Joint Space Muscle Fatigue Model and Integration into Full Body Motion Prediction for Repetitive Dynamic Tasks
合作研究:关节空间肌肉疲劳模型并集成到重复动态任务的全身运动预测中
  • 批准号:
    2014278
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
  • 批准号:
    1703093
  • 财政年份:
    2017
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
  • 批准号:
    2339932
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
  • 批准号:
    24K20779
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
  • 批准号:
    2309810
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Optimization and scaling of ladder polymers for membrane-based gas separations
SBIR 第一阶段:用于膜基气体分离的梯形聚合物的优化和规模化
  • 批准号:
    2151444
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Design, Analysis, and Optimization of Equitable and Value-based Baseline Testing Policies for Sports-Related Concussion
运动相关脑震荡公平且基于价值的基线测试政策的设计、分析和优化
  • 批准号:
    10649169
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
  • 批准号:
    2309802
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: Optimization of a Novel Compliant Mechanisms-Based Laparoscope Cleaning Device
SBIR 第一阶段:基于新型顺应机制的腹腔镜清洁装置的优化
  • 批准号:
    2213695
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
  • 批准号:
    23K11047
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了