Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
基本信息
- 批准号:2309810
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The past decade has seen remarkable success in deep learning. However, a significant challenge in today's era is to ensure interpretability and reliability in these models. In various applications, deep neural networks (DNNs) need to provide guarantees on their outputs, such as maintaining a self-driving car within its lane. On the other hand, many of these tasks can be formulated as optimization problems, where optimization algorithms offer interpretable and reliable solutions. Unfortunately, these models do not leverage data and thus fall short of state-of-the-art deep learning models. This research will address enhancing interpretability and reliability in deep learning methods and improve public safety when such learning methods are applied. In addition, the project will provide valuable educational opportunities for students involved. Participants will gain knowledge in inverse problems, optimization, and machine learning, which are transferable skills applicable in academia, government, and industry. The project aims to develop a framework that combines the interpretability and reliability of optimization algorithms with the design and training of DNNs. The primary focus is on implicit networks, a type of DNNs that determines their outputs implicitly through fixed point or optimality conditions, rather than a fixed number of computations like traditional DNNs with a set number of layers. This integration of optimization algorithms into implicit networks is referred to as implicit learning-to-optimize (L2O) networks. Implicit L2O networks have the potential to overcome the limitations of traditional DNNs, including their lack of reliability and interpretability. However, training and designing implicit L2O models present additional challenges that hinder their widespread adoption. To address these challenges, the research aims to develop a universal implicit L2O framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年里,深度学习取得了巨大的成功。然而,当今时代的一个重大挑战是确保这些模型的可解释性和可靠性。在各种应用中,深度神经网络(DNN)需要为其输出提供保证,例如将自动驾驶汽车保持在车道内。另一方面,这些任务中的许多可以被公式化为优化问题,其中优化算法提供可解释和可靠的解决方案。不幸的是,这些模型没有利用数据,因此达不到最先进的深度学习模型。这项研究将解决增强深度学习方法的可解释性和可靠性的问题,并在应用此类学习方法时改善公共安全。此外,该项目将为参与的学生提供宝贵的教育机会。参与者将获得逆问题,优化和机器学习方面的知识,这些知识是适用于学术界,政府和工业界的可转移技能。该项目旨在开发一个框架,将优化算法的可解释性和可靠性与DNN的设计和训练相结合。主要关注的是隐式网络,这是一种DNN,它通过固定点或最优性条件隐式地确定其输出,而不是像传统DNN那样具有固定层数的固定数量的计算。将优化算法集成到隐式网络中称为隐式学习优化(L2O)网络。隐式L2O网络有可能克服传统DNN的局限性,包括缺乏可靠性和可解释性。然而,训练和设计隐式L2O模型带来了额外的挑战,阻碍了它们的广泛采用。为了应对这些挑战,该研究旨在开发一个通用的隐含L2O框架。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samy Wu Fung其他文献
Structured World Representations in Maze-Solving Transformers
迷宫解决变压器中的结构化世界表示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael I. Ivanitskiy;Alex F Spies;Tilman Rauker;Guillaume Corlouer;Chris Mathwin;Lucia Quirke;Can Rager;Rusheb Shah;Dan Valentine;Cecilia G. Diniz Behn;Katsumi Inoue;Samy Wu Fung - 通讯作者:
Samy Wu Fung
A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding
应用于多智能体路径查找的高维最优控制神经网络方法
- DOI:
10.1109/tcst.2022.3172872 - 发表时间:
2021 - 期刊:
- 影响因子:4.8
- 作者:
Derek Onken;L. Nurbekyan;Xingjian Li;Samy Wu Fung;S. Osher;Lars Ruthotto - 通讯作者:
Lars Ruthotto
Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs
Hamilton-Jacobi 偏微分方程演化的非凸问题全局解
- DOI:
10.1007/s42967-022-00239-5 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Howard Heaton;Samy Wu Fung;S. Osher - 通讯作者:
S. Osher
Faster Predict-and-Optimize with Three-Operator Splitting
通过三算子分割加快预测和优化速度
- DOI:
10.48550/arxiv.2301.13395 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Mckenzie;Samy Wu Fung;Howard Heaton - 通讯作者:
Howard Heaton
A multiscale method for model order reduction in PDE parameter estimation
偏微分方程参数估计中模型降阶的多尺度方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Samy Wu Fung;Lars Ruthotto - 通讯作者:
Lars Ruthotto
Samy Wu Fung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samy Wu Fung', 18)}}的其他基金
Development of Geometrically-Flexible Physics-Based Convolution Kernels
基于几何灵活物理的卷积核的开发
- 批准号:
2110745 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Classification of learners based on explicit and implicit shyness and an examination of appropriate learning environments and support methods
根据显性和隐性害羞对学习者进行分类,并检查适当的学习环境和支持方法
- 批准号:
23K02874 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10344019 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10544161 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Assessing and Addressing Implicit Organizational Bias to Tackle Mental Health Disparities
评估和解决隐性组织偏见以解决心理健康差异
- 批准号:
10192277 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Assessing and Addressing Implicit Organizational Bias to Tackle Mental Health Disparities
评估和解决隐性组织偏见以解决心理健康差异
- 批准号:
10386879 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Assessing and Addressing Implicit Organizational Bias to Tackle Mental Health Disparities
评估和解决隐性组织偏见以解决心理健康差异
- 批准号:
10551800 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Implicit Bias in the Evidence: An Evaluation of Female-Predominant Disease
证据中的隐性偏见:对女性主导疾病的评估
- 批准号:
10686886 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别:
Determining the implicit and rule-based learning ability of individuals with aphasia to better align learning ability and intervention
确定失语症患者的内隐学习能力和基于规则的学习能力,以更好地协调学习能力和干预
- 批准号:
10532767 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别:
Determining the implicit and rule-based learning ability of individuals with aphasia to better align learning ability and intervention
确定失语症患者的内隐学习能力和基于规则的学习能力,以更好地协调学习能力和干预
- 批准号:
10115334 - 财政年份:2020
- 资助金额:
$ 29.5万 - 项目类别: