Developing an axiomatic theory of evolution
发展公理化的进化论
基本信息
- 批准号:0928772
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern evolutionary theory is based on a set of sophisticated mathematical models that describe how populations change over time and diverge from one another. While this collection of models has been very successful, it has not produced a unified mathematical evolutionary theory, since each model is based on different simplifying assumptions. It is thus not clear how the different models relate to one another, and some real evolutionary processes are invisible to this body of theory because they are not addressed by any particular model. The goal of this project is to develop a single body of mathematical evolutionary theory that is based only on assumptions that we know to be true, and that will both unify the existing models and allow study of evolutionary processes that current theory fails to address.This project will have two important consequences. First, the work will provide tools for investigating evolutionary dynamics in cases that have previously been hard to study, such as very small populations, those in highly unstable environments, and those living in patchy environments with variable migration rates. These populations are most likely to experience either speciation or extinction. Second, this work will illuminate the underlying mathematical unity of evolutionary theory, both deepening our understanding of how evolution works, and solidifying evolutionary biology as a science grounded in universal mathematical rules. Graduate students and postdoctoral researchers will be trained in mathematical evolutionary biology, and particularly in presenting their research to non-mathematical audiences. Results will be published in open access journals and the PI plans a webpage that links all publications with a non-technical summary of the project.
现代进化论基于一套复杂的数学模型,描述了种群如何随着时间的推移而变化以及彼此之间的差异。虽然这一系列模型非常成功,但它并没有产生一个统一的数学进化理论,因为每个模型都基于不同的简化假设。因此,我们并不清楚这些不同的模型之间是如何相互关联的,而一些真实的进化过程对这个理论体系来说是不可见的,因为它们没有被任何特定的模型所处理。这个项目的目标是开发一个单一的数学进化理论体系,它只基于我们知道是正确的假设,这将统一现有的模型,并允许研究当前理论未能解决的进化过程。首先,这项工作将为研究以前难以研究的情况下的进化动力学提供工具,例如非常小的种群,高度不稳定的环境中的种群,以及生活在具有可变迁移率的斑块环境中的种群。这些种群最有可能经历物种形成或灭绝。其次,这项工作将阐明进化理论的基本数学统一性,既加深了我们对进化如何运作的理解,又巩固了进化生物学作为一门以普遍数学规则为基础的科学的地位。研究生和博士后研究人员将接受数学进化生物学方面的培训,特别是向非数学受众展示他们的研究。研究结果将发表在开放获取期刊上,PI计划建立一个网页,将所有出版物与项目的非技术摘要链接起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Rice其他文献
Hypocalcemia in Trauma is Determined by the Number of Units Transfused, Not Whole Blood Versus Component Therapy.
创伤中的低钙血症取决于输血单位的数量,而不是全血与成分治疗。
- DOI:
10.1016/j.jss.2023.03.043 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chad Hall;Cameron Colbert;Sean Rice;E. Dewey;Martin Schreiber - 通讯作者:
Martin Schreiber
Do Students Believe Girls Belong in Engineering? So What?
学生们相信女孩适合从事工程学吗?
- DOI:
10.18260/1-2--30342 - 发表时间:
2018 - 期刊:
- 影响因子:2
- 作者:
Henriette D. Burns;Sean Rice - 通讯作者:
Sean Rice
Stochastic Motion Planning Using Successive Convexification and Probabilistic Occupancy Functions
使用连续凸化和概率占用函数的随机运动规划
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Abraham P. Vinod;Sean Rice;Y. Mao;Meeko Oishi;Behçet Açikmese - 通讯作者:
Behçet Açikmese
Effects of Graphs on Text Comprehension
图表对文本理解的影响
- DOI:
10.1177/154193120004402117 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Sean Rice;D. Gillan - 通讯作者:
D. Gillan
Sean Rice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Rice', 18)}}的其他基金
Mathematical Foundations of Evolutionary Theory
进化论的数学基础
- 批准号:
0616942 - 财政年份:2006
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Dissertation Research: Patterns of Reproductive Isolation in the Brachionus plicatilis Species Complex (Rotifera)
论文研究:褶皱臂尾轮虫物种复合体(轮虫类)的生殖隔离模式
- 批准号:
0105040 - 财政年份:2001
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
相似海外基金
Axiomatic study of accounting standards by cooperative game theory
合作博弈论会计准则的公理化研究
- 批准号:
22K01790 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An axiomatic approach to classical field theory
经典场论的公理化方法
- 批准号:
526745-2018 - 财政年份:2018
- 资助金额:
$ 49.88万 - 项目类别:
University Undergraduate Student Research Awards
A reconstruction of axiomatic foundations of modern utility theory: toward a construction of unified axiom systems
现代效用理论公理基础的重建:走向统一公理系统的构建
- 批准号:
23653051 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Applications of axiomatic set theory
公理集合论的应用
- 批准号:
395860-2010 - 财政年份:2010
- 资助金额:
$ 49.88万 - 项目类别:
JSPS Researcher Exchange Program
Applications of axiomatic set theory
公理集合论的应用
- 批准号:
395860-2010 - 财政年份:2009
- 资助金额:
$ 49.88万 - 项目类别:
JSPS Researcher Exchange Program
The study of the axiomatic quantum field theory using ultrahyperfunctions
利用超超函数研究公理量子场论
- 批准号:
16540159 - 财政年份:2004
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large cardinal properties of ideals
理想的大基本属性
- 批准号:
15540115 - 财政年份:2003
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Axiomatic and Strategic Analysis of Allocation: Theory and Applications
分配的公理和战略分析:理论与应用
- 批准号:
0214691 - 财政年份:2002
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
Geometry of Field Theory and Spinor Analysis
场论几何和旋量分析
- 批准号:
13640224 - 财政年份:2001
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE STUDY OF HYPERFUNCTION QUANTUM FIELD THEORY
超函数量子场论研究
- 批准号:
12640181 - 财政年份:2000
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)