Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
基本信息
- 批准号:0933559
- 负责人:
- 金额:$ 32.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0933559RuanSummaryThe objective of the proposed research is to understand and reduce thermalization loss in solar cell materials by using the phonon bottleneck effect in nanocrystals, and therefore to increase the energy conversion efficiency. Due to the broadband of solar spectrum, photons with energy higher than the bandgap can generate hot electrons at a temperature much higher than the lattice. Normally these hot electrons rapidly pass their excess potential energy to the lattice through electron-phonon scattering processes, losing their excess energy to heat and causing lower solar energy conversion efficiency. In nanocrystals the continuous bands become discrete energy levels and the spacing can be engineered to be larger than the energy of a single phonon, making the electron relaxation through phonons a slow process. This "phonon bottleneck effect" can lead to significantly reduced electron-phonon relaxation rates and enhanced solar cell efficiency. However, the current understanding of this phenomenon is very limited - the experimental data are often inconsistent, and the theoretical models are only qualitative, preventing the predictive design of optimum nanocrystals that maximize the phonon bottleneck effect. Intellectual Merits: In this study, the PIs will integrate theory, simulation, synthesis, and characterizations to minimize the hot electron relaxation in nanocrystal solar materials. A non-adiabatic molecular dynamics method will be developed to simulate the phonon-assisted hot electron relaxation rates, and will be used to determine the optimum size, shape, and surface terminations that give the slowest hot electron relaxation. Based on the numerical results the PIs anticipate to gain a profound understanding of how atomic structures of nanomaterials affect their electron-phonon coupling. The computed nanostructures with optimum electron-phonon coupling will be synthesized with precise size and shape control. These materials will then be characterized using femtosecond lasers for the slowed relaxation rates. Solar cells based on these optimized quantum dots will be fabricated and tested and their efficiencies will be compared with their bulk counterpart. The combined computation, synthesis, and characterization will allow optimization of the nanocrystals to achieve the phonon bottleneck effect and higher solar cell efficiency. Broader impact: The research addresses one of the grand energy challenges for the nation. The project is part of the PIs' efforts to include fundamental physics into an integrated research-education effort in energy transport and conversion. The new knowledge acquired from this project will significantly enrich the courses taught by the PIs. The PIs have been actively recruiting underrepresented groups in their research programs. The team will extensively engage in energy education and outreach activities for K-12 and local community through workshops, seminars, and demonstration projects. The PIs will also engage in the outreach activities with the heat transfer and nanotechnology research communities via nanoHUB and thermalHUB
本研究的目的是利用纳米晶体中的声子瓶颈效应来了解和减少太阳能电池材料中的热损失,从而提高能量转换效率。由于太阳光谱的宽带性,能量高于带隙的光子可以在远高于晶格的温度下产生热电子。正常情况下,这些热电子通过电子-声子散射过程将其多余的势能迅速传递给晶格,将其多余的能量损失为热量,导致太阳能转换效率较低。在纳米晶体中,连续的能带变成离散的能级,并且间距可以被设计成大于单个声子的能量,使得通过声子的电子弛豫是一个缓慢的过程。这种“声子瓶颈效应”可以显著降低电子-声子弛豫率,提高太阳能电池效率。然而,目前对这一现象的理解非常有限--实验数据往往不一致,理论模型也只是定性的,阻碍了最大限度地发挥声子瓶颈效应的最佳纳米晶体的预测性设计。智能优点:在这项研究中,PI将整合理论、模拟、合成和表征,以最小化纳米晶太阳能材料中的热电子弛豫。非绝热分子动力学方法将被用来模拟声子辅助的热电子驰豫速率,并将被用来确定产生最慢热电子驰豫的最佳尺寸、形状和表面终止。基于数值结果,PI期望对纳米材料的原子结构如何影响其电子-声子耦合有一个深刻的理解。通过精确的尺寸和形状控制,可以合成出具有最佳电声子耦合的计算纳米结构。然后将使用飞秒激光来表征这些材料的减慢弛豫速率。基于这些优化的量子点的太阳能电池将被制造和测试,并将其效率与其体相对应的太阳能电池进行比较。将计算、合成和表征相结合,可以对纳米晶体进行优化,以实现声子瓶颈效应和更高的太阳能电池效率。更广泛的影响:这项研究解决了美国面临的重大能源挑战之一。该项目是私人投资机构将基础物理纳入能源运输和转换方面的综合研究-教育努力的一部分。透过这项计划所学到的新知识,将大大丰富督导人员所教授的课程。私人投资机构一直在积极地在其研究计划中招募代表性不足的群体。该小组将通过研讨会、研讨会和示范项目,广泛参与针对K-12和当地社区的能源教育和外联活动。专业人员还将通过NanHUB和therMalHUB参与与热传递和纳米技术研究界的外联活动
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Impacts of radiative cooling paints for COsub2/sub reduction and global warming mitigation
辐射冷却涂料对减少二氧化碳排放和缓解全球变暖的影响
- DOI:
10.1016/j.enbuild.2025.115458 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.100
- 作者:
Emily Barber;Navdeep Vansal;Ziqi Fang;Yu-Wei Hung;Joseph Peoples;Rebecca Ciez;Travis Horton;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Electronic and phononic characteristics of high-performance radiative cooling pigments h-BN: A comparative study to BaSOsub4/sub
高性能辐射冷却颜料六方氮化硼(h - BN)的电子和声子特性:与硫酸钡(BaSO₄)的对比研究
- DOI:
10.1016/j.mtphys.2025.101721 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.700
- 作者:
Ziqi Guo;Ioanna Katsamba;Daniel Carne;Dudong Feng;Kellan Moss;Emily Barber;Ziqi Fang;Andrea Felicelli;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Effects of nanolayer versus nanosphere morphologies on radiative cooling
- DOI:
10.1016/j.ijheatmasstransfer.2024.125902 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Ioanna Katsamba;Krutarth Khot;Andrea Felicelli;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.1002/adfm.201704233 - 发表时间:
2017-11 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Quantifying the diverse wave effects in thermal transport of nanoporous graphene
- DOI:
10.1016/j.carbon.2022.06.011 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Han Wei;Yue Hu;Hua Bao;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
- 批准号:
2102645 - 财政年份:2021
- 资助金额:
$ 32.47万 - 项目类别:
Continuing Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
- 批准号:
1150948 - 财政年份:2012
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
- 批准号:
2734768 - 财政年份:2026
- 资助金额:
$ 32.47万 - 项目类别:
Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 32.47万 - 项目类别:
Studentship
High Performance Reefable Wingsail Rig Design and Pre-deployment Trial
高性能可折叠翼帆装置设计和预部署试验
- 批准号:
10092779 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Collaborative R&D
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
EU-Funded
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Research Grant
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
- 批准号:
DP240102559 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Projects
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Discovery Early Career Researcher Award