SOLAR: Integrated Electro-Photonic Development of Polymer Solar Cells

太阳能:聚合物太阳能电池的集成电光开发

基本信息

项目摘要

TECHNICAL SUMMARY:This award on solar energy research is co-funded by the Divisions of Chemistry, Materials Research, and Mathematical Sciences of the Directorate for Mathematical and Physical Sciences. A collaboration of chemistry, physics, and applied mathematics groups at the University of North Carolina will explore the limitations of bulk-heterojunction polymer solar cells, which have been identified as economical and easy to manufacture. An interdisciplinary team will design, fabricate, and optimize photonic crystal solar cells that specifically address the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. The aim is to achieve simultaneously an efficient absorption of photons with effective carrier extraction, but unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker modules whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. The UNC approach, based on the advanced optical control possible with photonic crystals, enables efficient light capture by a photonic arrangement of nanostructures while significantly reducing the effective path carriers need to travel to reach contacts. Integrating an applied mathematics component into the team will enable rigorous and simultaneous optimization of both photonic crystal designs and carrier extraction pathways. Moreover, the optimized nanostructures will be scalable to large areal dimensions via a technique called PRINT (Pattern Replication In Nonwetting Templates), a recent breakthrough in roll-to-roll nanomolding pioneered in Chapel Hill. NONTECHNICAL SUMMARY:Polymer solar cells have demonstrable advantages such as ease and economy of fabrication, but to compete with the lower cost of fossil fuels they must attain higher efficiencies. A collaborative group of researchers at the University of North Carolina at Chapel Hill will use an interdisciplinary approach to optimize a novel type of photonic-crystal solar cell. Inspired by nature's own design, a design manifested in the beautiful iridescent colors of minerals, gems, insects, and butterflies photonic crystals enhance the absorption of light and are expected to increase solar cell efficiency. The unorthodox alliance of three disciplines at UNC (applied mathematics, chemistry and physics) will leverage rigorous mathematical modeling to optimize the design and fabrication of photonic crystal solar cells. Moreover, this atypical conjunction of a mathematician, a chemist and a physicist working together on the challenging problem of polymer solar cell efficiency will provide a unique educational environment for undergraduate and graduate students, one wherein the power of a diversity of backgrounds is emphasized in approaches to complex, interdisciplinary problems.
技术摘要:关于太阳能研究的奖项是由化学,材料研究和数学科学局的数学科学分区共同资助的。北卡罗来纳大学的化学,物理和应用数学组的合作将探讨散装 - 直接结聚合物太阳能电池的局限性,这些太阳能电池已被确定为经济且易于制造。跨学科团队将设计,制造和优化光子晶体太阳能电池,这些太阳能电池专门针对聚合物光伏材料中的不同长度尺度,从而面临太阳能电池技术的主要挑战:效率。目的是同时实现有效的载体提取的光子有效吸收,但不幸的是,这两个过程具有相反的要求。 有效地吸收了较厚模块的光线,而载体运输始终受益于较薄的模块,而这种二分法是效率/成本难题的核心,该二分法使相对于化石燃料保持昂贵的太阳能。 基于光子晶体的高级光学控制,UNC方法可以通过纳米结构的光子布置有效地捕获光,同时显着降低了有效的路径载体需要行驶以达到触点。 将应用的数学组件集成到团队中将使光子晶体设计和载体提取途径既可以进行严格且同时优化。 此外,优化的纳米结构将通过一种称为“打印的技术”(非缠结模板中的图案复制)扩展到大面积尺寸,这是最近在教堂山开创的滚动纳米型的突破。非技术摘要:聚合物太阳能电池具有可观的优势,例如轻松和制造的经济性,但要与化石燃料的较低成本竞争,它们必须达到较高的效率。北卡罗来纳大学教堂山分校的一个合作研究人员将使用跨学科的方法来优化一种新型的光子晶体太阳能电池。 受自然设计的启发,以美丽的虹彩,宝石,昆虫和蝴蝶光子晶体的彩虹色颜色体现出来的设计,可增强光的吸收,并有望提高太阳能电池效率。 UNC(应用数学,化学和物理学)的三个学科的非正统联盟将利用严格的数学建模来优化光子晶体太阳能电池的设计和制造。 此外,这种数学家,化学家和物理学家在聚合物太阳能细胞效率方面的挑战性问题共同努力的这种非典型结合将为本科生和研究生提供独特的教育环境,其中强调了多种背景的能力,在对复杂的,跨学科的方法中的方法中都强调了。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Samulski其他文献

Edward Samulski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Samulski', 18)}}的其他基金

Excluded Volume and Electrostatic Interactions in Liquid Crystals
排除液晶中的体积和静电相互作用
  • 批准号:
    0501262
  • 财政年份:
    2005
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Continuing Grant
Excluded Volume and Electrostatic Interactions in Liquid Crystals
排除液晶中的体积和静电相互作用
  • 批准号:
    9971143
  • 财政年份:
    1999
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Purchase of a Step-Scan FTIR Spectrometer and Accessories
购买步进扫描 FTIR 光谱仪和配件
  • 批准号:
    9709057
  • 财政年份:
    1997
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Purchase of a Single Crystal X-ray Diffractometer/CCD Area Detector System
购买单晶 X 射线衍射仪/CCD 区域探测器系统
  • 批准号:
    9709977
  • 财政年份:
    1997
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Upgrade of Departmental Electron Paramagnetic Resonance Facility
部门电子顺磁共振设备升级
  • 批准号:
    9709037
  • 财政年份:
    1997
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Excluded Volume and Electrostatic Interactions in Liquid Crystals
排除液晶中的体积和静电相互作用
  • 批准号:
    9412701
  • 财政年份:
    1995
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Continuing Grant
Nematic-Like Interactions in Deformed Elastomers
变形弹性体中的类向列相互作用
  • 批准号:
    8213113
  • 财政年份:
    1983
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant

相似国自然基金

宽频超声阵列驱动的无线感知与电刺激功能融合柔性传感技术与应用研究
  • 批准号:
    62371441
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
多压共轨液电双源融合系统高能效驱动重载装备的设计理论与方法
  • 批准号:
    52305068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合本体感应能力的肌电假肢功能提升机理研究
  • 批准号:
    62373086
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
模量选区SEBS介电薄膜的界面融合调控与机理研究
  • 批准号:
    52303107
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
融合井地联合电法的地浸采铀溶浸剂运移过程模拟与优化
  • 批准号:
    42372295
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits
DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台
  • 批准号:
    2323752
  • 财政年份:
    2023
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Nano-Opto-Electro-Mechanical Integrated Oscillator Arrays for Energy-Efficient Physical Reservoir Computing (NOEMIA)
用于节能物理油藏计算的纳米光机电集成振荡器阵列 (NOEMIA)
  • 批准号:
    EP/X03495X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Research Grant
Electro-Thermally Integrated Traction Inverter
电热一体化牵引逆变器
  • 批准号:
    2205934
  • 财政年份:
    2022
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
Hybrid perovskite integrated electro-optic modulator
混合钙钛矿集成电光调制器
  • 批准号:
    534030-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Collaborative Research and Development Grants
Collaborative Research: Micro-Electro-Mechanical Neural Integrated Sensing and Computing Units for Wearable Device Applications
合作研究:用于可穿戴设备应用的微机电神经集成传感和计算单元
  • 批准号:
    1935641
  • 财政年份:
    2019
  • 资助金额:
    $ 161.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了