Integrated Electro-Biocatalysis for Arylation
芳基化的集成电生物催化
基本信息
- 批准号:2279460
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite a venerable history in synthetic chemistry, electrosynthesis has historically been regarded as the preserve of specialists and only rarely been used to discover new reactions and shape conceptual developments in molecule making. A number of developments have coincided to suggest this landscape is changing, and that electrosynthesis will be heavily influential in the immediate future of synthesis: 1) Sustainable chemistry - the availability of cheap energy sources to power new processes under very mild conditions has critical significance for the green chemistry agenda. 2) Technology - Synthetic chemists are now far more receptive to technological advances in the laboratory, with the success of flow chemistry exemplifying how process innovation can create reaction discovery. 3) Mechanism - Single electron transfer chemistry has undergone a major renaissance in the literature, with photoredox catalysis being one of the principal drivers of new synthesis over the past ten years. The conceptual overlap with electrochemistry is clear, whereby precise control of electron transfer enables new reaction pathways to be discovered in synthesis.We will explore 'electro-bio' processes to exploit the strengths of electrosynthesis (versatile C-C bond formations and / or global redox change) and those of biocatalysis (exquisite control of absolute stereochemistry), showcasing the exceptionally mild conditions that are axiomatic to both techniques. We have established some preliminary results in the laboratory in collaboration with the Turner (biocatalysis) and Dryfe (electrochemistry) groups, on an electro-oxidation system integrated with biocatalytic reductive amination (1->2). This has established expertise and equipment in the group and surmounted parts of the steep learning curve necessary to effectively use electrochemical methods to make molecules. We will apply these techniques to the discovery of new arylation methods that can exploit electricity to create sustainable routes to enantio-enriched heteroarenes. For example, the Oxidative Nucleophilic Substitution of Hydrogen (ONSH) developed by the Makosza group is an extremely powerful transformation in concept for the alkylation of electron poor arenes and azines, but is plagued by very harsh oxidants that restrict application. We will develop an aqueous electrochemical oxidation system that will oxidize the sigma-complex 5 formed from nucleophilic addition of enolate equivalents. The resultant protected amino acid 6 can then directly undergo biocatalytic deracemization to produce valuable enantioenriched building blocks for pharma and the wider fine chemical industry.Contrastingly, we will study electroreduction of pyridiniums (8) to enable the fundamental transformation of flat sp2 carbon residues into higher value sp3 moieties. The reduction of pyridines to piperidines is a powerful exemplification of this idea that has seen extensive research in the hydrogenation field using precious metal catalysis. We will develop a sustainable, metal-free electrochemical approach, beginning with activated substrates such as the nicotinidinium 8, that can access substituted piperidines 9 for further biocatalytic manipulation. The HDNO / IRED technology developed in the Turner group is extremely effective for de-racemizing secondary amines such as 9, and will deliver biologically-enriched piperidines 10.The electro/bio integration presents exciting possibilities for technology development to discover new transformations. Our preliminary work was established in batch and has been extended to a prototype flow system that puts an electrochemical cell in line with an immobilized enzyme compartment. Development of these concepts will be strengthened by iCAT interactions with flow engineering to develop new collaborative approaches to integrated systems that are discovered in the course of the programme.
尽管在合成化学中有着悠久的历史,但电合成在历史上一直被认为是专家的保留,很少用于发现新的反应和塑造分子制造的概念发展。许多发展同时表明这种情况正在发生变化,并且电合成将在不久的将来对合成产生重大影响:1)可持续化学-在非常温和的条件下为新工艺提供动力的廉价能源的可用性对绿色化学议程具有至关重要的意义。2)技术-合成化学家现在更容易接受实验室中的技术进步,流动化学的成功例证了工艺创新如何创造反应发现。3)单电子转移化学在文献中经历了一次重大的复兴,光氧化还原催化是过去十年来新合成的主要驱动力之一。与电化学的概念重叠是明确的,从而精确控制电子转移,使新的反应途径被发现在合成。我们将探讨'电生物'过程,利用电合成的优势(通用的C-C键形成和/或整体氧化还原变化)和生物催化的那些(绝对立体化学的精致控制),展示了两种技术都不言自明的异常温和的条件。我们与Turner(生物催化)和Dryfe(电化学)小组合作,在实验室中建立了一些初步结果,涉及与生物催化还原胺化(1->2)相结合的电氧化系统。这在小组中建立了专业知识和设备,并克服了有效使用电化学方法制造分子所需的陡峭学习曲线的一部分。我们将应用这些技术发现新的芳基化方法,可以利用电力创造可持续的路线,对映体丰富的杂芳烃。例如,由Makosza小组开发的氢的氧化亲核取代(ONSH)是用于贫电子芳烃和吖嗪的烷基化的概念上的极其强大的转变,但是受到限制应用的非常苛刻的氧化剂的困扰。我们将开发一种水性电化学氧化系统,该系统将氧化由烯醇化物等价物的亲核加成形成的σ-络合物5。然后,得到的保护的氨基酸6可以直接进行生物催化去外消旋化,以产生有价值的对映体富集的结构单元,用于制药和更广泛的精细化学工业。相比之下,我们将研究吡啶鎓(8)的电还原,以使平坦的sp2碳残基基本转化为更高价值的sp3部分。将吡啶还原为哌啶是这一想法的有力例证,在使用贵金属催化的氢化领域中已经看到了广泛的研究。我们将开发一种可持续的,无金属的电化学方法,从活化的底物开始,如nicotinidinium 8,可以访问取代的哌啶9进行进一步的生物催化操作。Turner集团开发的HDNO / IRED技术对于仲胺(如9)的去外消旋非常有效,并将提供生物富集的哌啶10。电/生物集成为技术开发提供了令人兴奋的可能性,以发现新的转化。我们的初步工作是建立在批处理,并已扩展到一个原型的流动系统,使一个电化学电池线与固定化酶隔室。这些概念的发展将通过iCAT与流量工程的互动来加强,以开发新的协作方法来实现在该计划过程中发现的集成系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
- 批准号:21177017
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
- 批准号:
EP/Y002482/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036948/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036565/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Electro-Shock Synthesis of High Entropy Alloy Nanoparticles from Sub-Femtoliter Reactors
职业:亚飞升反应器电冲击合成高熵合金纳米粒子
- 批准号:
2327563 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Distributed, Wirelessly Powered, Implantable, Opto-Electro Neural Interface
职业:分布式、无线供电、可植入、光电神经接口
- 批准号:
2239915 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
- 批准号:
2302879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
An experimental study of multi-ion effects on collisionless shock using electro-magnetically driven plasma flow
使用电磁驱动等离子体流的多离子效应对无碰撞冲击的实验研究
- 批准号:
23K13079 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Greater Manchester Electro-chemical Hydrogen Cluster
大曼彻斯特电化学氢集群
- 批准号:
10055151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D














{{item.name}}会员




