CMG: Multivariate Nonstationary Spatial Extremes in Climate and Atmospherics

CMG:气候和大气中的多元非平稳空间极值

基本信息

  • 批准号:
    0934595
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This project will develop methods to estimate the likelihood of extreme weather and climate events, both in observations and in climate model simulations. Extremes, expressed as the magnitude of an event that is only expected to occur once in a given time period, such as the size of the 100-year flood, are central to planning for infrastructural projects like dams and levees. But return times for extreme events are difficult to estimate from the relatively short time period available from the instrumented record. The calculation of expected extreme values for a given return time is further complicated by long-term trends in the data due to climate change, which contradict the stationarity assumption on which traditional statistics is predicated. Beyond these temporal issues, long-term data for extreme event studies is only available at specific locations, while estimates of extreme value likelihood are desired over the large intervening regions. The work conducted under this project will develop statistical techniques to overcome the difficulties presented by nonstationarity in time and sparseness in space. Three new frameworks will be introduced to characterize extremes: (1) Nonparametric multivariate spatial Dirichlet-type mixture models for the observations, (2) Bayesian nonparametric functional data analysis to estimate multivariate spatial extremes, and (3) Mixture models, with marginals that have generalized extreme value (GEV) distributions with spatially varying parameters and the observations are spatially-correlated even after accounting for the spatially varying parameters. The research will produce spatial maps of extreme values for temperature, both from observations and climate model simulations of the recent past (1970-2000).The research will be of interest to a large audience including statisticians, climatologists, and resource managers. One motivation for the work is the problem of determining how the frequency of extreme events will change in a changing climate. Climate change is usually expressed in terms of changes in long-term means averaged over large regions, but the adverse impacts associated with changes in extremes, such as increases in the occurrence of heat waves, can pose greater challenges than changes in means. In addition, planning for extreme events is usually conducted based on past occurrences of extremes, but new techniques such as the ones developed here will be required to anticipate the likelihood of extremes in a changing climate.
该项目将开发在观测和气候模型模拟中估计极端天气和气候事件的可能性的方法。极端事件表示的是在给定时间段内预计只会发生一次的事件的严重程度,例如百年一遇的洪水的规模,这是水坝和堤坝等基础设施项目规划的核心。但是,从仪器记录可获得的相对较短的时间段很难估计极端事件的返回时间。由于气候变化导致的数据的长期趋势,对给定返回时间的预期极值的计算进一步复杂化,这与传统统计预测所依据的平稳性假设相矛盾。除了这些时间问题,极端事件研究的长期数据仅在特定地点可用,而极值可能性的估计需要在较大的中间区域进行。在该项目下开展的工作将开发统计技术,以克服时间上的非平稳性和空间上的稀疏性带来的困难。将引入三个新的框架来刻画极值:(1)用于观测值的非参数多变量空间Dirichlet型混合模型,(2)用于估计多变量空间极值的贝叶斯非参数泛函数据分析,以及(3)混合模型,其边缘具有具有空间变化参数的广义极值(GeV)分布,并且即使在考虑空间变化参数后观测值也是空间相关的。这项研究将从最近(1970-2000年)的观测和气候模型模拟中生成温度极值的空间地图。这项研究将引起包括统计学家、气候学家和资源管理人员在内的大量受众的兴趣。这项工作的一个动机是确定极端事件的频率在不断变化的气候下将如何变化的问题。气候变化通常以大区域平均长期平均值的变化来表示,但与极端变化相关的不利影响,如热浪发生的增加,可能比手段变化带来更大的挑战。此外,极端事件的计划通常是根据过去发生的极端事件进行的,但需要像这里开发的这样的新技术来预测气候变化中极端事件的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Montserrat Fuentes其他文献

Fixed-Domain Asymptotics for Variograms Using Subsampling
  • DOI:
    10.1023/a:1011074615343
  • 发表时间:
    2001-08-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Montserrat Fuentes
  • 通讯作者:
    Montserrat Fuentes

Montserrat Fuentes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Montserrat Fuentes', 18)}}的其他基金

Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
  • 批准号:
    1723158
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
  • 批准号:
    1406016
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
  • 批准号:
    1107046
  • 财政年份:
    2011
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Multivariate space-time models and methods to combine large disparate spatial data and numerical models
结合大量不同空间数据和数值模型的多元时空模型和方法
  • 批准号:
    0706731
  • 财政年份:
    2007
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Travel support for the IMS-ISBA international conference
IMS-ISBA 国际会议的差旅支持
  • 批准号:
    0419627
  • 财政年份:
    2004
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Estimation, Modeling and Prediction of Nonseparable and Nonstationary Space-Time Processes
不可分离和非平稳时空过程的估计、建模和预测
  • 批准号:
    0353029
  • 财政年份:
    2004
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Proposal: ISI and TIES Conference Support Program
合作提案:ISI 和 TIES 会议支持计划
  • 批准号:
    0304954
  • 财政年份:
    2003
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Spatial Modeling, Analysis and Prediction of Nonstationary Environmental Processes
非平稳环境过程的空间建模、分析和预测
  • 批准号:
    0002790
  • 财政年份:
    2000
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似海外基金

Bayesian adaptive robust adjustment of multivariate geodetic measurement processeswith data gaps and nonstationary colored noise
具有数据间隙和非平稳有色噪声的多元大地测量过程的贝叶斯自适应鲁棒调整
  • 批准号:
    386369985
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Research Grants
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1854181
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Equilibrium in Multivariate Nonstationary Time Series
多元非平稳时间序列中的均衡
  • 批准号:
    1612984
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
  • 批准号:
    1723158
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
  • 批准号:
    1406016
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1406622
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1406536
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
In-depth development and assessment of covariance models for multivariate nonstationary processes on a sphere
球面上多元非平稳过程协方差模型的深入开发和评估
  • 批准号:
    1208421
  • 财政年份:
    2012
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Nonstationary spatial-temporal covariance models for multivariate processes on a globe
全球多元过程的非平稳时空协方差模型
  • 批准号:
    0906532
  • 财政年份:
    2009
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Modeling and Interpreting Multivariate Nonstationary Brain Wave Time Series
多元非平稳脑电波时间序列的建模和解释
  • 批准号:
    8507398
  • 财政年份:
    1985
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了