Equilibrium in Multivariate Nonstationary Time Series
多元非平稳时间序列中的均衡
基本信息
- 批准号:1612984
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonstationary time series systems appear routinely in economics, seismology, neuroscience, and physics, where stationarity is usually synonymous with equilibrium. Such systems are usually multidimensional, and their modeling, prediction, and control have tremendous social and scientific impacts. Isolating and identifying equilibrium or stationary features are of fundamental importance in prediction and control of such systems. This research project aims to develop methodologies for extracting aspects of multivariate nonstationary processes that display a sense of equilibrium or stationarity. It is interdisciplinary in nature and has immediate applications to the analysis of economics, seismology, and neuroscience data. A graduate student will be involved in the research. This research project aims to elevate the concept and theory of cointegration from multivariate integrated time series rooted in economics theory to the more general multivariate nonstationary time series setup in probability and statistics. In spite of its central role in econometrics in the last four decades and well-founded motivations in economics, the cointegration theory suffers from the requirements that the series be integrated (unit-root nonstationary) and satisfy a vector autoregressive and moving average model. The goal of this project is to avoid such restrictions and focus on general multivariate nonstationary time series. Three distinct methods for computing analogues of cointegrating vectors and the cointegrating rank will be developed. The first is a time-domain method in line with the classical (Johansen's) approach that relies on the reduced rank regression and likelihood ratio tests. The second method is in the spectral domain and relies on the idea of projection pursuit. It searches for coefficients of candidate linear combinations by minimizing a projection index measuring the discrepancy between time-varying and constant spectral density functions. The third method is concerned with a time-varying cointegration setup where the coefficients are piecewise constant over time. Its successful implementation rests on a good solution of the problem of change-point detection for nonstationary processes, and a novel solution is explored in this research. The results will have immediate impact in settings where multivariate time series data are collected, such as in financial markets, epidemiology, environmental monitoring, and global change.
非平稳时间序列系统经常出现在经济学、地震学、神经科学和物理学中,其中平稳性通常是平衡的同义词。这些系统通常是多维的,它们的建模、预测和控制具有巨大的社会和科学影响。分离和识别平衡或平稳特征对于预测和控制这类系统至关重要。本研究项目旨在开发方法,用于提取显示平衡或平稳性的多元非平稳过程的各个方面。它本质上是跨学科的,可以直接应用于经济学、地震学和神经科学数据的分析。一名研究生将参与这项研究。本研究项目旨在将协整的概念和理论从植根于经济学理论的多元整定时间序列提升到概率论和统计学中更一般的多元非平稳时间序列设置。尽管协整理论在过去四十年中在计量经济学中发挥了核心作用,并且在经济学中具有良好的动机,但它仍然受到一系列集成(单位根非平稳)和满足矢量自回归和移动平均模型的要求的影响。本项目的目标是避免这些限制,并将重点放在一般的多元非平稳时间序列上。三种不同的方法计算类似的协整向量和协整秩将发展。第一种是与经典(约翰森)方法一致的时域方法,它依赖于降秩回归和似然比检验。第二种方法是在谱域,依靠投影追踪的思想。它通过最小化测量时变和恒定谱密度函数之间差异的投影指数来搜索候选线性组合的系数。第三种方法涉及时变协整设置,其中系数随时间分段不变。它的成功实现取决于对非平稳过程的变点检测问题的良好解决,本研究探索了一种新的解决方案。研究结果将对收集多变量时间序列数据的环境产生直接影响,例如金融市场、流行病学、环境监测和全球变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohsen Pourahmadi其他文献
Means of operators and RKHS
运营商和 RKHS 的手段
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Akira Yamada - 通讯作者:
Akira Yamada
多重格子法による輸送方程式の定常問題に対する差分法の高速解法
稳态输运方程问题有限差分法的多重网格快速求解方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Yoshimasa Nakamura;藤原宏志 - 通讯作者:
藤原宏志
The Microcosm Principle and Compositionality of GSOS-Based Component Calculi
基于GSOS的分量演算的微观原理和组合性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Ichiro Hasuo - 通讯作者:
Ichiro Hasuo
行列値関数のHardy空間と多次元予測理論
矩阵值函数的Hardy空间与多维预测理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
多次元の予測理論的手法の最近の進展について
多维预测理论方法的最新进展
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
Mohsen Pourahmadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohsen Pourahmadi', 18)}}的其他基金
Sparse Graphical Models for Multivariate Time series
多元时间序列的稀疏图形模型
- 批准号:
1309586 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Generalized Linear Models for Large Correlation Matrices Via Partial Autocorrelations
通过偏自相关的大相关矩阵的广义线性模型
- 批准号:
0906252 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Model-based Classification of Longitudinal and Functional Data
基于模型的纵向和功能数据分类
- 批准号:
0505696 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Simultaneous Statistical Modeling of Several Large Covariance Matrices
多个大协方差矩阵的同时统计建模
- 批准号:
0307055 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9707721 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Autoregressive Representation of Nonstationary Processes
数学科学:非平稳过程的自回归表示
- 批准号:
8601858 - 财政年份:1986
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Cesaro Summability of the Linear Predictor of a Stationary Time Series
数学科学:平稳时间序列线性预测器的塞萨罗可和性
- 批准号:
8301240 - 财政年份:1983
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Bayesian adaptive robust adjustment of multivariate geodetic measurement processeswith data gaps and nonstationary colored noise
具有数据间隙和非平稳有色噪声的多元大地测量过程的贝叶斯自适应鲁棒调整
- 批准号:
386369985 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Research Grants
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1854181 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
- 批准号:
1723158 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
- 批准号:
1406016 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1406622 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1406536 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
In-depth development and assessment of covariance models for multivariate nonstationary processes on a sphere
球面上多元非平稳过程协方差模型的深入开发和评估
- 批准号:
1208421 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CMG: Multivariate Nonstationary Spatial Extremes in Climate and Atmospherics
CMG:气候和大气中的多元非平稳空间极值
- 批准号:
0934595 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Nonstationary spatial-temporal covariance models for multivariate processes on a globe
全球多元过程的非平稳时空协方差模型
- 批准号:
0906532 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Modeling and Interpreting Multivariate Nonstationary Brain Wave Time Series
多元非平稳脑电波时间序列的建模和解释
- 批准号:
8507398 - 财政年份:1985
- 资助金额:
$ 15万 - 项目类别:
Standard Grant