Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes

合作研究:大规模非平稳和多元空间过程的理论与方法

基本信息

  • 批准号:
    1406536
  • 负责人:
  • 金额:
    $ 30.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The field of spatial statistics is an expanding subset of statistical science with numerous applications in a wide variety of specialties such as geophysical, environmental, ecological and economic sciences. Modern datasets in these sciences often involve multiple variables observed at thousands to millions of irregularly spaced geographical locations. Associated scientific goals include surface estimation, stochastic simulation and statistical modeling to gain insight of underlying phenomena. Statistical analyses require flexible nonstationary and multivariate constructions, which have heretofore been hampered by a lack of models adequate for datasets of large magnitude. This project addresses this gap in statistical science, developing a unifying framework for nonstationary and multivariate spatial models capable of modeling complex spatial dependencies. Additionally, the justification for the use of nonstationary models is generally relegated to empirical results with data and simulation experiments; this research will develop a companion theory for exploring the relative benefit of these more complex spatial models. Using the tools introduced in this project, the final major goal is to develop a gridded data product for the historical climate of the United States based on large, irregularly spaced observational networks with transparent statistical methodology and formal quantification of the uncertainty in such an analysis. Historical data products such as this are of crucial importance in the fields of atmospheric and climate sciences.Modern spatial statistics has increased focus on developing methods for massive spatial datasets that involve multiple variables with complex dependency structures. This research aims to foster a common framework via multiresolution processes for modeling nonstationary and multivariate spatial structures that does not break down in the face of large sample sizes. Multiresolution processes lend themselves to fast estimation and computation, and also to the linked theoretical questions of asymptotic behavior of spatial estimators. For example, there is a lack of rigorous theoretical treatment of nonstationary approaches, with current understanding limited to experimental results. The companion large sample theory of this research is aimed at identifying situations in which nonstationary models provide tangible benefits over simpler stationary cousins. A linked goal is approximation theory for existing spatial constructions; special multiresolution constructions can approximate existing covariances such as the Matern, allowing for a theoretical treatment of spatial smoothing under these common classes of covariances. Additionally, the project will generalize the notion of a multiresolution process to the multivariate setting, allowing for feasible and flexible inference-based modeling of massive multivariate spatial datasets.
空间统计领域是统计科学的一个不断扩大的子集,在地球物理,环境,生态和经济科学等各种专业中有许多应用。 这些科学中的现代数据集通常涉及在数千到数百万个不规则间隔的地理位置上观察到的多个变量。 相关的科学目标包括表面估计、随机模拟和统计建模,以深入了解潜在的现象。 统计分析需要灵活的非平稳和多变量的结构,这迄今为止一直受到缺乏足够的模型,大规模的数据集。 该项目解决了统计科学中的这一差距,为能够模拟复杂空间依赖关系的非平稳和多变量空间模型开发了一个统一的框架。 此外,使用非平稳模型的理由一般被降级为经验结果与数据和模拟实验,本研究将开发一个同伴理论,探索这些更复杂的空间模型的相对优势。利用该项目中介绍的工具,最终的主要目标是根据大型、不规则间隔的观测网络,开发美国历史气候的网格化数据产品,采用透明的统计方法,并对这种分析中的不确定性进行正式量化。 像这样的历史数据产品在大气和气候科学领域至关重要。现代空间统计学越来越重视为涉及具有复杂依赖结构的多变量的海量空间数据集开发方法。 本研究旨在通过多分辨率过程建立一个通用的框架,用于建模非平稳和多变量空间结构,这些结构不会在大样本量面前崩溃。 多分辨率过程有助于快速估计和计算,也有助于空间估计量渐近行为的相关理论问题。 例如,缺乏严格的非平稳方法的理论处理,目前的理解仅限于实验结果。 这项研究的同伴大样本理论的目的是确定的情况下,非平稳模型提供了有形的好处比简单的固定表兄弟。 一个相关的目标是现有空间结构的近似理论;特殊的多分辨率结构可以近似现有的协方差,如Matern,允许在这些常见的协方差类下对空间平滑进行理论处理。 此外,该项目将把多分辨率过程的概念推广到多变量环境,允许对大量多变量空间数据集进行可行且灵活的基于推理的建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Kleiber其他文献

Random elastic space–time (REST) prediction
随机弹性时空(REST)预测
  • DOI:
    10.1016/j.spasta.2025.100904
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Nicolas Coloma;William Kleiber
  • 通讯作者:
    William Kleiber
Spatial impacts of technological innovations on the levelized cost of energy for offshore wind power plants in the United States
  • DOI:
    10.1016/j.seta.2021.101059
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matt Shields;Philipp Beiter;William Kleiber
  • 通讯作者:
    William Kleiber
Spatial statistics: Climate and the environment
空间统计学:气候与环境
  • DOI:
    10.1016/j.spasta.2024.100856
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Christopher K. Wikle;Mevin B. Hooten;William Kleiber;Douglas W. Nychka
  • 通讯作者:
    Douglas W. Nychka

William Kleiber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Kleiber', 18)}}的其他基金

Non-Gaussian Multivariate Processes for Renewable Energy and Finance
可再生能源和金融的非高斯多元过程
  • 批准号:
    2310487
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
AMPS: Deep Stochastic Models for Space-Time Weather-Driven Grid Simulations
AMPS:用于时空天气驱动网格模拟的深度随机模型
  • 批准号:
    1923062
  • 财政年份:
    2019
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
  • 批准号:
    1811294
  • 财政年份:
    2018
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Conference on Stochastic Weather Generators
随机天气发生器会议
  • 批准号:
    1822820
  • 财政年份:
    2018
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Statistical Validation and Uncertainty Quantification for Large Spatio-Temporal Datasets
合作研究:大型时空数据集的可扩展统计验证和不确定性量化
  • 批准号:
    1417724
  • 财政年份:
    2014
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334040
  • 财政年份:
    2024
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327011
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311058
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
  • 批准号:
    2301197
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304852
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了