Center for Energy Efficient Electronics Science (Center for E3S)
节能电子科学中心(E3S中心)
基本信息
- 批准号:0939514
- 负责人:
- 金额:$ 2500万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Center for Energy Efficient Electronics Science (E3S)Principal Investigator: Yablonovitch, EliProposal Number: 0939514Lead Institution: University of California, BerkeleyInformation-processing equipment, including computers, consumer electronics, telephony, office equipment, network equipment, data centers and servers, and supercomputers consumes a significant fraction of the total electricity production in the US, and it is growing dramatically with time, both on an absolute basis and as a fraction of the total. The inexorable growth in the role of information in society will place an increasing burden on the US energy economy. Aggregate energy used for information technology constitutes a genuine, looming energy crisis in information processing. At the most fundamental level, the energy used to manipulate a single bit of information is currently a million times greater than theoretical limits. In order to address this issue, there is a critical need for fundamental and conceptual breakthroughs in the underlying physics, chemistry and materials science that form the foundation of information-processing technologies. This Science and Technology Center for Energy Efficient Electronics Science (E3S) seeks to approach the fundamental physical limits and engineering realization of electronic devices and systems for digital information- processing technologies. The Center for E3S proposes to research revolutionary concepts, and scientific principles that would enable fundamentally new and different science for digital-information processing, in order to achieve a radical reduction in energy usage.Intellectual Merit:Current technology is dependent on the transistor, which suffers from a serious voltage-dependent limitation, since it requires a powering voltage close to 1 Volt, whereas the wires of an electronic circuit will function with tolerable signal-to-noise ratio, even at voltages as low as 1 millivolt. If the operating voltage is reduced by a factor of one thousand, than power will be reduced by a factor of one million. Hence, the energy per bit-function in digital electronics is currently one million times higher than it needs to be. New science that would enable a millivolt electronic switch will lead to a successor to the conventional transistor, thereby resulting in a paradigm shift in digital electronics. Currently, CMOS dissipates a minimum of about 30,000 eV per digital function. The 2007 International Technology Roadmap for Semiconductors projects a goal for this value to be reduced to about 800 eV per digital function by the Year 2022. To address this revolutionary challenge, an interdisciplinary team of scientists from UC Berkeley, MIT and Stanford University will assemble in E3S to conduct research in four interrelated themes: I. Nanoelectronics: solid-state millivolt switching; 2. Nanomechanics: zero-leakage switching; 3. Nanomagnetics: surpassing the Landauer Limit; and 4. Nanophotonics: few-photon optical communication, for the common goal of new energy-efficient device architectures.The central idea behind Theme 1 is to change the operational paradigm for the logic switch by controlling the width of the energy barrier rather than the height. Conduction occurs via tunneling of electrons, and it can be shown that this type of device can be operated at very low supply voltages and with very low off-currents. Theme 2 is focused on the design of nanoelectromechanical switches that will have zero off-state leakage current. To overcome contact wear and reliability issues, two novel switching device structures are proposed; one with an interface material between electrodes as they close; and one that uses a complementary configuration to obtain very-low-energy switching. Theme 3 seeks to surmount the Landauer Limit of 18 meV energy dissipation per logic operation at room temperature by using nanomagnetic devices. Electrical control of ferromagnetism, as compared to an external magnetic field, is proposed as an energy-efficient alternative. Theme 4 seeks to use nanophotonics for ultra-low-energy communications to approach the physical energy limits for intra and inter-chip communication between devices. A new form of spontaneous emission of light will be explored that is potentially superior to conventional stimulated emission. Broader Impacts:Many programs at the participating institutions (UC Berkeley, MIT, and Stanford and with three minority-serving institutions: Contra Costa College (CCC), Los Angeles Trade Technical College (LATTC), and Tuskegee University, international collaboration with Oxford University, the University of Toronto and the University Hong Kong and industrial partnerships with Intel, IBM, Google, Lam Research and Hewlett Packard) will be leveraged to integrate research and education programs. Among these are pre-college programs including: Summer High School Apprenticeship Program for rising high school seniors (UC Berkeley), Pre-College Engineering Academy for 11th and 12th grade high school students (UC Berkeley), Saturday Engineering Enrichment and Discovery Program (MIT), Minority Introduction to Engineering and Science Program at the undergraduate level (MIT), the Transfer-To-Excellence Program for community college students (UC Berkeley), E3S Center Summer Research Program for community college students, the Summer Undergraduate Program in Engineering Research at UC Berkeley, and the MIT Summer Research Program for minority students. A Graduate Student Council will be formed to develop student leadership skills. A Graduate Student Rotation Program will benefit students as well as enhance synergy among the four proposed research themes. At the postgraduate level, university postdoctoral fellows programs will be leveraged to recruit minority and female faculty. The Center plans to disseminate research results and activities to a broader audience to increase energy awareness through weekly energy forums and monthly lectures in the San Francisco Bay area, and plans to implement a comprehensive evaluation and assessment plan for the Center?s research and education activities.
节能电子科学研究中心(E3S)项目负责人:Yablonovitch, eli项目编号:0939514信息处理设备,包括计算机、消费电子产品、电话、办公设备、网络设备、数据中心和服务器,以及超级计算机,消耗了美国总发电量的很大一部分,而且随着时间的推移,无论是在绝对基础上还是在占总发电量的一小部分上,它都在急剧增长。信息在社会中作用的不可阻挡的增长将给美国能源经济带来越来越大的负担。用于信息技术的总能源构成了信息处理中真正的、迫在眉睫的能源危机。在最基本的层面上,目前用于操作单个信息比特的能量比理论极限高出一百万倍。为了解决这一问题,迫切需要在构成信息处理技术基础的基础物理、化学和材料科学方面取得基础和概念上的突破。能源效率电子科学科技中心(E3S)寻求接近数字信息处理技术的电子设备和系统的基本物理极限和工程实现。E3S中心建议研究革命性的概念和科学原理,这些概念和科学原理将从根本上为数字信息处理提供新的和不同的科学,以实现能源使用的彻底减少。智力优势:目前的技术依赖于晶体管,它受到严重的电压依赖限制,因为它需要接近1伏特的供电电压,而电子电路的导线即使在低至1毫伏的电压下也能以可容忍的信噪比工作。如果工作电压减少一千倍,那么功率将减少一百万倍。因此,目前数字电子产品中每个比特功能的能量比需要的高100万倍。一项能够制造毫伏电子开关的新科学,将导致传统晶体管的继任者,从而导致数字电子学的范式转变。目前,CMOS每个数字功能的功耗至少约为30,000 eV。2007年国际半导体技术路线图(International Technology Roadmap for Semiconductors)预计,到2022年,该数值将降至每个数字功能约800 eV。为了应对这一革命性的挑战,来自加州大学伯克利分校、麻省理工学院和斯坦福大学的跨学科科学家团队将在E3S中进行四个相关主题的研究:1 .纳米电子学:固态毫伏开关;2. 纳米力学:零泄漏开关;3. 纳米磁学:超越兰道尔极限;和4。纳米光子学:少光子光通信,为新的节能器件架构的共同目标。主题1背后的中心思想是通过控制能量势垒的宽度而不是高度来改变逻辑开关的操作范式。传导是通过电子的隧穿发生的,可以证明这种类型的设备可以在非常低的电源电压和非常低的断开电流下工作。主题2的重点是纳米机电开关的设计,将具有零的断开状态泄漏电流。为了克服接触磨损和可靠性问题,提出了两种新型开关器件结构;一种在电极之间有界面材料的;另一种是利用互补结构来获得非常低能量的开关。主题3试图通过使用纳米磁性器件来突破室温下每个逻辑运算的18mev能量损耗的兰道尔极限。与外部磁场相比,铁磁的电气控制被认为是一种节能的替代方案。主题4寻求利用纳米光子学进行超低能量通信,以接近器件之间芯片内和芯片间通信的物理能量极限。将探索一种新的自发光发射形式,它有可能优于传统的受激光。更广泛的影响:参与机构的许多项目(加州大学伯克利分校、麻省理工学院和斯坦福大学,以及三所少数族裔服务机构:康特拉科斯塔学院(CCC)、洛杉矶贸易技术学院(latc)和塔斯基吉大学),与牛津大学、多伦多大学和香港大学的国际合作,以及与英特尔、IBM、b谷歌、Lam Research和惠普的工业伙伴关系)将被用来整合研究和教育项目。其中包括大学预科课程,包括:面向高三学生的暑期高中学徒计划(加州大学伯克利分校),面向高中11年级和12年级学生的大学预科工程学院(加州大学伯克利分校),周六工程丰富和发现计划(麻省理工学院),本科阶段的少数民族工程和科学介绍计划(麻省理工学院),面向社区大学生的卓越转移计划(加州大学伯克利分校),面向社区大学生的E3S中心暑期研究计划,加州大学伯克利分校的暑期本科工程研究项目,以及麻省理工学院针对少数族裔学生的暑期研究项目。研究生会将成立,以发展学生的领导能力。研究生轮转计划将使学生受益,并加强四个拟议研究主题之间的协同作用。在研究生阶段,将利用大学博士后项目来招募少数民族和女性教师。中心计划通过在旧金山湾区举办的每周能源论坛和每月讲座,向更广泛的受众传播研究成果和活动,以提高能源意识,并计划对中心实施全面的评价和评估计划。美国的研究和教育活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eli Yablonovitch其他文献
Energy conservation in the picosecond and subpicosecond photoelectric effect.
- DOI:
10.1103/physrevlett.60.795 - 发表时间:
1988-02 - 期刊:
- 影响因子:8.6
- 作者:
Eli Yablonovitch - 通讯作者:
Eli Yablonovitch
Fabrication and characterization of electrostatic Si∕SiGe quantum dots with an integrated read-out channel
具有集成读出通道的静电 Si∕SiGe 量子点的制造和表征
- DOI:
10.1063/1.2136436 - 发表时间:
2005 - 期刊:
- 影响因子:4
- 作者:
M. Sakr;Hong;Eli Yablonovitch;E. Croke - 通讯作者:
E. Croke
Liquid versus photonic crystals
液态与光子晶体
- DOI:
10.1038/44038 - 发表时间:
1999-10-07 - 期刊:
- 影响因子:48.500
- 作者:
Eli Yablonovitch - 通讯作者:
Eli Yablonovitch
Ultra-efficient epitaxial liftoff solar cells exploiting optical confinement in the wave limit. Final technical report: 19 July 1994--18 July 1998
- DOI:
10.2172/752422 - 发表时间:
1999-11 - 期刊:
- 影响因子:0
- 作者:
Eli Yablonovitch - 通讯作者:
Eli Yablonovitch
Combinatorial optimization using the Lagrange primal-dual dynamics of parametric oscillator networks
使用参数振荡器网络的拉格朗日原对偶动力学进行组合优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
S. Vadlamani;T. P. Xiao;Eli Yablonovitch - 通讯作者:
Eli Yablonovitch
Eli Yablonovitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eli Yablonovitch', 18)}}的其他基金
RET in Engineering and Computer Science Site: UC Berkeley's Context-Based Research Experience for Community College Faculty
工程和计算机科学领域的 RET 网站:加州大学伯克利分校针对社区学院教师的基于情境的研究经验
- 批准号:
1405547 - 财政年份:2014
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
MRI: Acquisition of Equipment for Quantum Information Processing
MRI:采购量子信息处理设备
- 批准号:
0079842 - 财政年份:2000
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
Nanostructure Technology for Making Photonic Crystals
制造光子晶体的纳米结构技术
- 批准号:
9632651 - 财政年份:1996
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
Nanostructure Technology for Making Photonic Crystals
制造光子晶体的纳米结构技术
- 批准号:
9307088 - 财政年份:1993
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
High Power Picosecond Co2 Laser Pulse Amplifier
高功率皮秒Co2激光脉冲放大器
- 批准号:
7826013 - 财政年份:1979
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Standard Grant
CCSCOC - novel energy-efficient carbon capture technology for mineralising carbon in molten waste to support heavy industry to reach net-zero
CCSCOC - 新型节能碳捕获技术,用于矿化熔融废物中的碳,支持重工业实现净零排放
- 批准号:
10091105 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Collaborative R&D
Nanobubbles for effective and energy efficient water treatment
用于有效且节能的水处理的纳米气泡
- 批准号:
IE230100437 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Early Career Industry Fellowships
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
- 批准号:
2904783 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Studentship
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 2500万 - 项目类别:
Continuing Grant