Surface transient storage in dead zones: Residence times from stream morphology, velocity and CFD modeling

死区表面瞬态存储:来自流形态、速度和 CFD 建模的停留时间

基本信息

  • 批准号:
    0943570
  • 负责人:
  • 金额:
    $ 41.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Transient storage in streams is the temporary retention of water and solutes in eddies and other "dead zones" (surface transient storage, or STS) and in the stream's subsurface (hyporheic transient storage, or HTS). Transient storage zones are where most of metabolism takes place in streams, and they are also very important to the fate and transport of heat and pollutants in streams. However, scientists have no easy, reliable method for quantitatively separating STS from HTS. Furthermore, in STS we do not know very precisely how the residence time distribution (RTD) and its mean relate to physical characteristics such as stream velocity, size of the dead zone, and number of eddies, even though such a relationship must exist and is intuitive. Preliminary field work indicates that the mean residence time in STS dead zones has greater variance (after accounting for differences in physical dimensions and velocity) than in dead zones in artificial channels or engineered dead zones in groynes. Preliminary work with a large-eddy simulation (LES) model suggests that it will be feasible to use this advanced computational fluid dynamics (CFD) method to simulate and understand dead zone residence times in natural streams.We will do detailed work on 5 dead zones at two discharges (for a total of 10) to characterize their physical dimensions, roughness, velocities, and residence times. Three of these will be simulated with LES. The LES, in turn, will be used to train less precise but cheaper Reynolds Averaged Navier-Stokes (RANS) models of the same dead zones. RANS models of all 10 dead zones will be developed, and the sensitivity of the RTD and mean residence time to each physical characteristic will be measured. We will use the LES and RANS models to develop a quantitative relationship between the RTD and the physical characteristics of the dead zone. This relationship will be tested on 20 dead zones where the physical characteristics and RTDs have been measured and that have no CFD model. The RTD relationship will be based on field-measureable parameters, and will not require a CFD model. To understand the limits of the RTD relationship, we will test it in the field against a number of non-ideal STS features, such as those with large wood or boulders and those in higher-velocity, larger streams. In addition to the 3 LES simulations on different STS sites, we will do a scaling analysis on the LES results to much higher Reynolds numbers to predict results (and the limits of the RTD relationship) for higher-velocity and larger streams. Lastly, we will develop a physics-based classification scheme for STS. This will allow us to state the limits of the RTD relationship in terms that are qualitatively and quantitatively easy to use in the field, and it will also help hydrologists and stream ecologists to communicate about STS.A quantitative RTD relationship for STS will allow hydrologists and stream ecologists to do a better job at predicting the movement of nutrients, pollutants, and heat in streams and rivers. This, in turn, will help with management of problems such as hypoxia in the Gulf of Mexico, nutrient loading in streams, excess stream temperature, and the cleanup of pollutant spills. The development of the RTD relationship will train several graduate and undergraduate students in both hydrology and CFD modeling, and will advance the field of CFD modeling. We will run a short course and conference on CFD modeling in hydrologic and allied sciences.
溪流中的瞬时储存是水和溶质在漩涡和其他“死区”(表面瞬时储存,或STS)以及溪流的地下(潜流瞬时储存,或HTS)中的暂时保留。 瞬时储存区是河流中大部分代谢发生的地方,对河流中热量和污染物的归宿和传输也非常重要。然而,科学家们没有简单可靠的方法来定量分离STS和HTS。 此外,在STS中,我们并不非常精确地知道停留时间分布(RTD)及其平均值与物理特性(如流速、死区大小和涡流数量)的关系,尽管这种关系必须存在并且是直观的。 初步的现场工作表明,STS死区的平均停留时间有较大的变化(后占物理尺寸和速度的差异)比在人工渠道或工程设计的死区丁坝死区。 大涡模拟(LES)模型的初步工作表明,这将是可行的,使用这种先进的计算流体动力学(CFD)方法来模拟和了解死区在自然stream.We的停留时间将做详细的工作5死区在两个排放(共10),以表征其物理尺寸,粗糙度,速度和停留时间。 其中三个将用LES模拟。 反过来,LES将用于训练相同死区的较不精确但较便宜的雷诺平均纳维尔-斯托克斯(RANS)模型。 将开发所有10个死区的RANS模型,并测量RTD和平均停留时间对每个物理特性的灵敏度。 我们将使用LES和RANS模型来建立RTD和死区物理特性之间的定量关系。 该关系将在20个死区上进行测试,这些死区的物理特性和RTD已被测量,并且没有CFD模型。 RTD关系将基于现场可测量参数,不需要CFD模型。 为了了解RTD关系的局限性,我们将在现场测试它对一些非理想的STS功能,如那些与大木材或巨石和那些在更高的速度,更大的流。 除了在不同STS站点上进行的3次LES模拟外,我们还将对LES结果进行缩放分析,以更高的雷诺数来预测更高速度和更大流的结果(以及RTD关系的限制)。 最后,我们将开发一个基于物理的STS分类方案。这将使我们能够在定性和定量方面说明RTD关系的局限性,易于在现场使用,它也将有助于水文学家和河流生态学家交流STS。STS的定量RTD关系将使水文学家和河流生态学家能够更好地预测河流和河流中营养物质,污染物和热量的运动。 反过来,这将有助于管理墨西哥湾的缺氧、河流中的营养物负荷、过高的河流温度和污染物泄漏的清理等问题。 RTD关系的发展将在水文学和CFD建模方面培养一些研究生和本科生,并将推动CFD建模领域的发展。 我们将举办一个短期课程和会议,在水文和相关科学的CFD建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roy Haggerty其他文献

Electrical resistivity imaging of the architecture of substream sediments
支流沉积物结构的电阻率成像
  • DOI:
    10.1029/2008wr006968
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    N. Crook;A. Binley;Rosemary Knight;David A. Robinson;J. Zarnetske;Roy Haggerty
  • 通讯作者:
    Roy Haggerty
Hydrologic connectivity and dynamics of solute transport in a mountain stream: Insights from a long-term tracer test and multiscale transport modeling informed by machine learning
山间溪流中溶质传输的水文连通性和动力学:长期示踪剂测试和机器学习提供的多尺度传输模型的见解
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Phong V.V. Le;S. Rathore;Ethan T. Coon;Adam S. Ward;Roy Haggerty;Scott L. Painter
  • 通讯作者:
    Scott L. Painter

Roy Haggerty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roy Haggerty', 18)}}的其他基金

Collaborative Research: How do hydrology and biogeochemistry control carbon flux from headwater streams to the atmosphere?
合作研究:水文学和生物地球化学如何控制从水源流到大气的碳通量?
  • 批准号:
    1417603
  • 财政年份:
    2014
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
A Metabolically Active Transient Storage Model for Predicting Nutrient Retention in Streams
用于预测溪流中养分保留的代谢活跃瞬时存储模型
  • 批准号:
    0838338
  • 财政年份:
    2009
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Controls on hyporheic nitrate retention - discriminating among transport, reaction-rate, and substrate limitation
合作研究:控制次流硝酸盐保留 - 区分运输、反应速率和底物限制
  • 批准号:
    0409534
  • 财政年份:
    2004
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
Interactions Between Streams and Groundwater Along the River Continuum: Scaling up to a Stream Network
河流连续体沿线溪流与地下水之间的相互作用:扩展到溪流网络
  • 批准号:
    9909564
  • 财政年份:
    2000
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

TRPV1受体在盐敏感性高血压过程中所介导的肾脏保护作用的机理研究
  • 批准号:
    81170243
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
感觉神经递质CGRP通过与P物质的相互作用改善心肌缺血的机制探讨
  • 批准号:
    30801213
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于系统轨迹灵敏度的电力市场下最佳安全运行算法研究
  • 批准号:
    50377028
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

On-the-Fly Dual Reduction for Optimal Design of Transient Responses in Thermal Energy Storage
用于热能存储中瞬态响应优化设计的动态双重还原
  • 批准号:
    2219931
  • 财政年份:
    2022
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
Rapid Transient Depletion of Pre-existing Antibodies for rAAV Gene Delivery
快速瞬时消耗 rAAV 基因传递的现有抗体
  • 批准号:
    9807279
  • 财政年份:
    2019
  • 资助金额:
    $ 41.69万
  • 项目类别:
Enhancing leaf transient carbon stores - role of fumarate as a possible storage compound
增强叶片瞬时碳储存——富马酸盐作为可能的储存化合物的作用
  • 批准号:
    BB/J004103/1
  • 财政年份:
    2012
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Research Grant
Transient characteristics of energy storage devices
储能装置的暂态特性
  • 批准号:
    415666-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 41.69万
  • 项目类别:
    University Undergraduate Student Research Awards
A Metabolically Active Transient Storage Model for Predicting Nutrient Retention in Streams
用于预测溪流中养分保留的代谢活跃瞬时存储模型
  • 批准号:
    0838338
  • 财政年份:
    2009
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
A Silicon Microreactor for Transient Spatially Resolved FTIR and Thermal Analysis of NOx Storage Reduction Catalysts and Reactors
用于氮氧化物存储还原催化剂和反应器瞬态空间分辨 FTIR 和热分析的硅微反应器
  • 批准号:
    0828852
  • 财政年份:
    2008
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
Planning and Operation of NAS Battery Systems for the Solution of Energy Envitonment Problems
解决能源环境问题的NAS电​​池系统的规划和运行
  • 批准号:
    14550278
  • 财政年份:
    2002
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic Study on the Storage and Processing of Beans
豆类贮藏加工基础研究
  • 批准号:
    06660320
  • 财政年份:
    1994
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Dynamics and Simulation of Head-Medium Interface in Magnetic Storage Systems
磁存储系统磁头-介质界面的动力学与仿真
  • 批准号:
    63460106
  • 财政年份:
    1988
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Research Initiation - a Unified Approach to the Modeling of Transient Storage, Treatment, and Transport of Urban Point And Nonpoint Water Pollutants
研究启动——城市点水污染物和非点水污染物瞬时储存、处理和输送建模的统一方法
  • 批准号:
    7805531
  • 财政年份:
    1978
  • 资助金额:
    $ 41.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了