EAGER: Machines that Learn and Teach Seamlessly

EAGER:无缝学习和教学的机器

基本信息

项目摘要

This proposed work seeks to develop a computational approach that can be used to learn a skill from humans and, through the same medium, turn around and teach other less proficient humans what it learned. The learning and teaching will be done through agents that contain the knowledge relevant to the desired skills. Such an agent can be referred to as a learning and teaching agent (LATA). The work plans to accomplish this through two sequential approaches: 1) observational learning (by the agent only), and 2) force feedback learning and teaching. Observational learning will be used to build a minimally proficient LATA agent by observing a human perform the desired task or display the desired skill on a simulator. This agent will be called the baseline agent. This baseline agent will then be enhanced through force feedback learning, where a human will coach the system by providing corrective counter force in real time when the LATA agent errs in its performance of the task. The skills to be learned/taught will require the use of a haptic device such as a joystick or steering wheel as the primary interface. It will learn the actions that the trainer employs to execute the task competently, and use the same haptic device to coach and/or evaluate a less proficient human trainee in learning the same skill. The planned approach centers on using neuroevolutionary techniques. Neuroevolution has been successfully used to address highly complex problems such as pole balancing, abnormal behavior in drivers, and to evolve bots in video games that gradually improve their performance. The proposed work will modify the basic concept of neuroevolutionary techniques as necessary, and apply the resulting system to observational learning as well as force feedback refinement. The testbed domain will be a crane that off-loads boxes or containers from a ship and places them in some other conveyance such as a railroad car or truck. A computer simulation will be used for teaching the LATA agents how to do this. Instructors are increasingly difficult to find, especially for specialty areas that require special skills. From a practical standpoint, this research would give organizations involved in training new tools to teach their constituents. Specific beneficiaries of this technology would include organizations that train students to perform tasks requiring complex motor skills such as driving a car, flying an airplane or operating a crane. The resulting agents could also be used to train operators of tele-operated robots, cranes, unmanned aerial vehicles and other such devices. Surgery training is another potential application of this approach given the appropriate haptic devices. Another interesting application could be for training disabled people basic motor skills.
这项提议的工作旨在开发一种计算方法,可以用来向人类学习一项技能,并通过同样的媒介,反过来教其他不那么熟练的人类它所学到的东西。学习和教学将通过包含与所需技能相关的知识的代理完成。这样的代理可以称为学习和教学代理(LATA)。这项工作计划通过两种顺序的方法来实现这一目标:1)观察学习(仅由智能体),以及2)强制反馈学习和教学。观察学习将用于通过观察人类执行所需任务或在模拟器上显示所需技能来构建最低精通的LATA代理。这个代理将被称为基线代理。然后,这个基线智能体将通过力反馈学习得到增强,当LATA智能体在执行任务时出现错误时,人类将通过实时提供纠正反力来指导系统。要学习/教授的技能将需要使用触觉设备,如操纵杆或方向盘作为主要界面。它将学习训练师为胜任任务而采用的动作,并使用相同的触觉设备来指导和/或评估不太熟练的人类受训人员学习相同的技能。计划中的方法以使用神经进化技术为中心。神经进化已经成功地用于解决高度复杂的问题,如杆平衡、司机的异常行为,以及进化电子游戏中的机器人,逐渐提高它们的表现。所提出的工作将根据需要修改神经进化技术的基本概念,并将所得系统应用于观察学习以及力反馈改进。试验台领域将是一个起重机,从船上卸下箱子或集装箱,并将它们放置在其他运输工具上,如铁路车厢或卡车。计算机模拟将用于教LATA代理如何做到这一点。教师越来越难找,特别是在需要特殊技能的专业领域。从实际的角度来看,这项研究将为参与培训的组织提供新的工具来教育他们的选民。这项技术的具体受益者将包括培训学生执行需要复杂运动技能的任务的组织,如驾驶汽车、驾驶飞机或操作起重机。由此产生的代理也可用于培训远程操作机器人、起重机、无人驾驶飞行器和其他此类设备的操作员。手术训练是这种方法的另一个潜在应用,如果有合适的触觉设备。另一个有趣的应用可能是训练残疾人的基本运动技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avelino Gonzalez其他文献

Pipelining of Fuzzy ARTMAP without matchtracking: Correctness, performance bound, and Beowulf evaluation
  • DOI:
    10.1016/j.neunet.2006.10.003
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    José Castro;Jimmy Secretan;Michael Georgiopoulos;Ronald DeMara;Georgios Anagnostopoulos;Avelino Gonzalez
  • 通讯作者:
    Avelino Gonzalez
Parallelization of Fuzzy ARTMAP to improve its convergence speed: The network partitioning approach and the data partitioning approach
  • DOI:
    10.1016/j.na.2005.02.013
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    José Castro;Michael Georgiopoulos;Jimmy Secretan;Ronald F. DeMara;Georgios Anagnostopoulos;Avelino Gonzalez
  • 通讯作者:
    Avelino Gonzalez

Avelino Gonzalez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avelino Gonzalez', 18)}}的其他基金

IRES: Avatar-based Adaptive Context System
IRES:基于阿凡达的自适应上下文系统
  • 批准号:
    1458272
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Diagnostic Driving: Real Time Driver Condition Detection Through Analysis of Driving Behavior
SCH:INT:协作研究:诊断驾驶:通过驾驶行为分析实时检测驾驶员状况
  • 批准号:
    1521972
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CRPA: Communicating Avatars: Artificial Intelligence + Computer Graphics = Innovative Science
CRPA:交流化身:人工智能计算机图形学 = 创新科学
  • 批准号:
    1138325
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
IRES: U.S.-France Research and Education on Contextual Reasoning and its Application to Conversational Agents
IRES:美法关于情境推理及其在对话代理中的应用的研究和教育
  • 批准号:
    0966429
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Life-like Computer Interfaces that Learn
协作研究:迈向逼真的学习计算机界面
  • 批准号:
    0703927
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Special Projects: Acquisition, Preservation and Re-use of Programmatic Knowledge
特别项目:程序化知识的获取、保存和再利用
  • 批准号:
    0406008
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
  • 批准号:
    70501008
  • 批准年份:
    2005
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Person-Centred Approach to Understanding Trust in Moral Machines
以人为本的方法来理解道德机器的信任
  • 批准号:
    EP/Y00440X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Superconducting electrical machines for zero emission aviation
用于零排放航空的超导电机
  • 批准号:
    EP/Y006437/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Robert Gordon University and John White & Son (Weighing Machines) Limited KTP 23_24 R1
罗伯特戈登大学和约翰怀特
  • 批准号:
    10071315
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Knowledge Transfer Partnership
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
  • 批准号:
    2338541
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Investigating linguistic and cognitive abstractions for solving word problems in minds and machines
职业:研究语言和认知抽象以解决大脑和机器中的文字问题
  • 批准号:
    2339729
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for The 32nd IEEE International Symposium On Field-Programmable Custom Computing Machines (FCCM 2024)
旅行:第 32 届 IEEE 国际现场可编程定制计算机研讨会 (FCCM 2024) 的 NSF 学生旅行补助金
  • 批准号:
    2411045
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
DNA Repair State Machines
DNA 修复状态机
  • 批准号:
    EP/X027406/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
New Generation of Electrical Machines Enabled by Additive Manufacturing
通过增材制造实现新一代电机
  • 批准号:
    EP/X038769/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
REPERTORIUM: Researching and Encouraging the Promulgation of European Repertory through Technologies Operating on Records Interrelated Utilising Machines
剧目:通过在相关记录使用机器上运行的技术来研究和鼓励欧洲剧目的颁布
  • 批准号:
    10068224
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了