CAREER: Analytical Rheology and the Dynamics of Polymer Melts

职业:分析流变学和聚合物熔体动力学

基本信息

  • 批准号:
    0953002
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education that seeks to develop novel algorithms to infer the architecture of polymer melts from rheological data. Addition of trace amounts of long-chain branching improves the processability of polymer melts. Despite its industrial importance, and advances in synthesis, which enable us to control the amount of branching, standard analytical methods such as chromatography and spectroscopy cannot reliably diagnose these trace levels. Rheology, on the other hand, is extremely sensitive to molecular architecture. This motivates the PI to investigate inverting contemporary models, based on the tube theory and hierarchical relaxation.The proposed algorithms are based on the idea of Bayesian inference, which is used to transform the inverse problem of inferring structure, into a sampling problem, that is attacked using Markov chain Monte Carlo methods. This approach has four unique advantages: (i) It can be applied to systems with an unknown number of species; (ii) It has a built-in Occam's razor, which prefera less complex solutions, (iii) It can characterize multiple solutions, and (iv) It can incorporate complementary analytical information in a systematic and robust manner.Contemporary rheological models, however, are less-than-perfect, and effort is directed in this project, at addressing these shortcomings by microscopic studies. In particular, we seek to study blends of cyclic and linear polymers to understand the process of constraint release, and to map physically different microscopic simulation models to understand the role of assumptions in coarse-graining.This project will promote teaching, training and learning by continuing undergraduate and graduate participation in the research effort. The PI's association with an HBCU will provide a conduit for the participation of minority students in the research. This together with various strategies will help broaden participation. The PI will use computation to emphasize the connection between the microscopic structure and motion and macroscopic properties and phenomena of materials. Educational tools developed will be distributed through the PI's website.NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education that seeks to develop novel algorithms to infer the structure of large molecules that have long branched chain-like structures through rheology. Rheology involves measuring how these materials respond to deformation. Addition of trace amounts of long-chain branching improves the processability of these molecules known broadly as polymers. Despite its industrial importance standard analytical experimental methods cannot reliably diagnose these trace levels. Rheology, on the other hand, is extremely sensitive to molecular architecture, and motivates the PI to consider using contemporary models based on sophisticated microscopic theories in a direction reversed from the usual way they are used. This process is called analytical rheology, and is an ill-posed problem, which seriously impairs current methods. The research will develop a method that addresses the most serious shortcomings, which includes the inability to discriminate the number of components and to address the multiplicity of possible structures. This project also involves improving the contemporary models of polymers that would be used in reverse. This project will promote teaching, training and learning by continuing undergraduate and graduate participation in the research effort. The PI's association with an HBCU will provide a conduit for the participation of minority students in the research. This together with various strategies will help broaden participation. The PI will use computation to emphasize the connection between the microscopic structure and motion and macroscopic properties and phenomena of materials. Educational tools developed will be distributed through the PI's website.
该职业奖支持理论和计算研究和教育,旨在开发新的算法,从流变数据推断聚合物熔体的结构。添加微量的长链支化改善了聚合物熔体的加工性能。尽管它在工业上很重要,而且在合成方面取得了进展,使我们能够控制支化的量,但标准的分析方法,如色谱法和光谱法,不能可靠地诊断这些痕量水平。另一方面,流变学对分子结构极其敏感。这促使PI研究反演当代模型,基于管理论和分层relaxation.The提出的算法是基于贝叶斯推理的思想,这是用来推断结构的逆问题转化为一个抽样问题,这是攻击使用马尔可夫链蒙特卡罗方法。这种方法有四个独特的优点:(i)它可以应用于具有未知数量的物种的系统;(ii)它有一个内置的奥卡姆剃刀,更喜欢不太复杂的解决方案,(iii)它可以表征多个解决方案,(iv)它可以以系统和鲁棒的方式结合互补的分析信息。在这个项目中,努力的方向是通过微观研究来解决这些缺点。特别是,我们寻求研究环状和线性聚合物的共混物,以了解约束释放的过程,并映射物理上不同的微观模拟模型,以了解假设在粗粒化中的作用。本项目将通过继续本科生和研究生参与研究工作,促进教学,培训和学习。PI与HBCU的联系将为少数民族学生参与研究提供渠道。这与各种战略一起将有助于扩大参与。PI将使用计算来强调材料的微观结构和运动与宏观特性和现象之间的联系。开发的教育工具将通过PI的网站分发。非技术总结该职业奖支持理论和计算研究和教育,旨在开发新的算法,通过流变学推断具有长支链结构的大分子的结构。流变学涉及测量这些材料对变形的反应。添加微量的长链支化改善了这些分子的加工性能,这些分子被广泛称为聚合物。尽管其工业重要性,标准的分析实验方法不能可靠地诊断这些痕量水平。另一方面,流变学对分子结构极其敏感,并促使PI考虑使用基于复杂微观理论的当代模型,其方向与通常使用的方向相反。这个过程被称为分析流变学,是一个不适定问题,严重损害了现有的方法。这项研究将开发一种方法,解决最严重的缺陷,其中包括无法区分组件的数量和解决可能的结构的多样性。该项目还涉及改进将被反向使用的聚合物的当代模型。该项目将通过继续本科生和研究生参与研究工作来促进教学、培训和学习。PI与HBCU的联系将为少数民族学生参与研究提供渠道。这与各种战略一起将有助于扩大参与。PI将使用计算来强调材料的微观结构和运动与宏观特性和现象之间的联系。所开发的教育工具将通过公共信息机构的网站分发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sachin Shanbhag其他文献

Single-Molecule Studies of DNA Self-Diffusion in Entangled Blends of Linear and Circular DNA
  • DOI:
    10.1016/j.bpj.2011.11.243
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Cole D. Chapman;Sachin Shanbhag;Douglas E. Smith;Rae M. Robertson-Anderson
  • 通讯作者:
    Rae M. Robertson-Anderson
Inference of polymer structure by simultaneous analysis of chromatographic and rheological measurements
  • DOI:
    10.1007/s00397-013-0734-2
  • 发表时间:
    2013-10-03
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Sachin Shanbhag
  • 通讯作者:
    Sachin Shanbhag
Does the nonuniqueness of the discrete relaxation spectrum really matter?
  • DOI:
    10.1007/s00397-025-01485-z
  • 发表时间:
    2025-02-27
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Sachin Shanbhag
  • 通讯作者:
    Sachin Shanbhag
Harmonic balance for differential constitutive models under oscillatory shear
振荡剪切下微分本构模型的谐波平衡
  • DOI:
    10.1063/5.0207942
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shivangi Mittal;Yogesh M. Joshi;Sachin Shanbhag
  • 通讯作者:
    Sachin Shanbhag
Can numerical methods compete with analytical solutions of linear constitutive models for large amplitude oscillatory shear flow?
数值方法可以与大幅度振荡剪切流的线性本构模型的解析解相竞争吗?
  • DOI:
    10.1007/s00397-023-01429-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Shivangi Mittal;Yogesh M. Joshi;Sachin Shanbhag
  • 通讯作者:
    Sachin Shanbhag

Sachin Shanbhag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sachin Shanbhag', 18)}}的其他基金

Augmented Tube Models for Blends of Star and Linear Polymers
星形和线性聚合物混合物的增强管模型
  • 批准号:
    1727870
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
  • 批准号:
    NE/Z503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grant
EA: Acquisition of analytical equipment for environmental biogeochemistry and mineralogy
EA:购置环境生物地球化学和矿物学分析设备
  • 批准号:
    2323242
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids
一种用于逆变器密集电网仿真的半解析异构多尺度方法
  • 批准号:
    2329924
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
  • 批准号:
    2339596
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: Data to Models (D2M), A Domain-Guided Translation of Sensor Data to Analytical Structural Models
职业:数据到模型 (D2M),传感器数据到分析结构模型的领域引导转换
  • 批准号:
    2340115
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
EAGLE: Enhanced Analytical and Genetics Tools for Improving UK Food Legumes
EAGLE:增强的分析和遗传学工具,用于改善英国食品豆类
  • 批准号:
    BB/W01923X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了