CAREER: Data to Models (D2M), A Domain-Guided Translation of Sensor Data to Analytical Structural Models
职业:数据到模型 (D2M),传感器数据到分析结构模型的领域引导转换
基本信息
- 批准号:2340115
- 负责人:
- 金额:$ 67.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite a demonstrated potential for autonomous asset management, data-driven methods have yet failed to impact structural engineering practice significantly. A major obstacle is that the high variability inherent in civil structures causes laboratory-developed algorithms to struggle without expert guidance. This Faculty Early Career Development Program (CAREER) award supports research to address this issue. This work introduces an approach to translating raw, multi-source sensor data into functional analytical models which realistically represent the as-built structural behavior. Three data types are considered: spatial data from images and laser scanning, non-destructive evaluation data such as ground penetrating radar, and response data from accelerometers and strain gages. In addition, the methodology introduces the use of a structural ontology (a graphical map of structural component relationships) as a way to encode domain knowledge in a way a computer can understand. This creates a link between specialized sensor measurements and broader functional models, with reduced input from an engineer. It is envisioned that the results of the research would support various future applications in infrastructure assessment, including the creation of digital twins. These anchor sensor data to an analytical model of the structure, enabling practicing engineers to interpret physical behavior more effectively, run simulations, and facilitating asset management decision. The technical approach of this work addresses three open research problems: (1) model-oriented identification of structural components from spatial and non-destructive evaluation data, (2) reasoning on encoded domain knowledge to establish structural component relationships, (3) fusing response data with component information to represent as-built behavior. To address (1) and (2), the framework uniquely combines a structural engineering ontology (domain knowledge) and probabilistic graphical models (reasoning) using a machine learning framework. It begins by identifying individual structural components (e.g. beams, reinforcement) in the data, then reasoning on their relationships and functions in 3D space. Thus, the diverse and noisy information obtained from computer vision techniques (e.g., component types, geometry) can be synthesized into a candidate structure that makes contextual sense. To address (3), candidate structures are combined with response data (accelerations, strains) via system identification techniques to infer unobservable properties such as boundary conditions, material properties, and connection stiffnesses. The final output is a calibrated model capable of analysis through standard tools like finite elements. In parallel, this work integrates research products into core engineering courses. Students will interact directly with the data, learning how create structural models of real-world structures while learning about AI and its applications in civil engineering. The structural ontology will be leveraged an interactive learning guide, allowing students to explore structural relationships as they work on a problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管已经证明了自主资产管理的潜力,但数据驱动的方法尚未对结构工程实践产生重大影响。一个主要的障碍是,土木结构固有的高度可变性导致实验室开发的算法在没有专家指导的情况下难以实现。这个教师早期职业发展计划(CAREER)奖支持研究,以解决这个问题。这项工作介绍了一种方法,将原始的多源传感器数据转换为功能分析模型,这些模型真实地代表了建成后的结构行为。考虑了三种数据类型:来自图像和激光扫描的空间数据、诸如探地雷达的非破坏性评估数据以及来自加速度计和应变计的响应数据。此外,该方法引入了使用结构本体(结构组件关系的图形映射)作为一种方式来编码领域知识的方式,计算机可以理解。这在专业传感器测量和更广泛的功能模型之间建立了联系,减少了工程师的输入。据设想,研究结果将支持基础设施评估中的各种未来应用,包括创建数字孪生模型。这些锚传感器数据到结构的分析模型,使执业工程师能够更有效地解释物理行为,运行模拟,并促进资产管理决策。本工作的技术方法解决了三个开放的研究问题:(1)从空间和非破坏性评估数据中识别结构构件的模型导向,(2)对编码的领域知识进行推理以建立结构构件关系,(3)将响应数据与构件信息融合以表示竣工行为。为了解决(1)和(2),该框架使用机器学习框架独特地组合了结构工程本体(领域知识)和概率图形模型(推理)。它首先识别数据中的单个结构组件(例如梁、钢筋),然后在3D空间中推理它们的关系和功能。因此,从计算机视觉技术获得的多样和有噪声的信息(例如,组件类型、几何形状)可以被合成为具有上下文意义的候选结构。为了解决(3),候选结构通过系统识别技术与响应数据(加速度,应变)相结合,以推断不可观察的属性,如边界条件,材料属性和连接刚度。 最终输出是一个经过校准的模型,能够通过标准工具(如有限元)进行分析。与此同时,这项工作将研究产品融入核心工程课程。学生将直接与数据进行交互,学习如何创建真实世界结构的结构模型,同时学习人工智能及其在土木工程中的应用。结构本体论将被用作互动学习指南,让学生在解决问题时探索结构关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodrigo Sarlo其他文献
emIn situ/em seismic testing for experimental modal analysis of civil structures
- DOI:
10.1016/j.engstruct.2022.114773 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:6.400
- 作者:
Santiago Bertero;Pablo A. Tarazaga;Rodrigo Sarlo - 通讯作者:
Rodrigo Sarlo
Registration of multiple point clouds in a deep learning framework Application to single molecule localization microscopy
在深度学习框架中注册多个点云在单分子定位显微镜中的应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xinxing Yuan;Alan Smith;F. Moreu;Rodrigo Sarlo;C. Lippitt;M. Hojati;S. Alampalli;Su Zhang - 通讯作者:
Su Zhang
Automatic evaluation of rebar spacing and quality using LiDAR data: Field application for bridge structural assessment
使用激光雷达数据自动评估钢筋间距和质量:桥梁结构评估的现场应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:10.3
- 作者:
Xinxing Yuan;Alan Smith;F. Moreu;Rodrigo Sarlo;C. Lippitt;M. Hojati;S. Alampalli;Su Zhang - 通讯作者:
Su Zhang
Application of Interpolatory Methods of Model Reduction to an Elevated Railway Pier
模型降阶插值法在高架铁路桥墩中的应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Santiago Bertero;S. Gugercin;Rodrigo Sarlo - 通讯作者:
Rodrigo Sarlo
Experimental and numerical study on the fundamental period of metal buildings
金属建筑基本周期的试验与数值研究
- DOI:
10.1016/j.engstruct.2024.119365 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:6.400
- 作者:
Santiago Bertero;Finley A. Charney;Rodrigo Sarlo - 通讯作者:
Rodrigo Sarlo
Rodrigo Sarlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Learning and Selecting Low-Dimensional Models from Incomplete Data
职业:从不完整数据中学习和选择低维模型
- 批准号:
2239479 - 财政年份:2023
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Data-Centric Evolutionary Contagion Models with Parallel and Quantum Parallel Computing
职业:具有并行和量子并行计算的以数据为中心的进化传染模型
- 批准号:
2236854 - 财政年份:2023
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2146191 - 财政年份:2022
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Probabilistic Models for Spatiotemporal Data with Applications to Dynamic Brain Connectivity
职业:时空数据的概率模型及其在动态大脑连接中的应用
- 批准号:
2046795 - 财政年份:2021
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Quantitative assessment of models for phylogenetic data
职业:系统发育数据模型的定量评估
- 批准号:
2045842 - 财政年份:2021
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Next generation mixed membership models for highly multivariate biodiversity data
职业:高度多元生物多样性数据的下一代混合成员模型
- 批准号:
2040819 - 财政年份:2021
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Combining Human Judgment and Data-Driven Approaches for the Development of Interpretable Models of Student Behaviors: Applications to Computer Science Education
职业:结合人类判断和数据驱动的方法来开发可解释的学生行为模型:在计算机科学教育中的应用
- 批准号:
1942962 - 财政年份:2020
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant
CAREER: Assimilation of Geodetic Data in Physical Models of Subduction Zones
职业:俯冲带物理模型中大地测量数据的同化
- 批准号:
1848192 - 财政年份:2019
- 资助金额:
$ 67.46万 - 项目类别:
Continuing Grant